Loading…

Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element

Stoichiometric near-room-temperature superconductors (NRTS) (for instance, H 3 S and LaH 10 ) exhibit a high ground-state upper critical field, B c2 (0) ⩾ 100 T, so that the magnetic phase diagram in these materials cannot be measured in non-destructive experiments. However, (Semenok et al 2022 Adv....

Full description

Saved in:
Bibliographic Details
Published in:Superconductor science & technology 2022-09, Vol.35 (9), p.95008
Main Author: Talantsev, Evgeny F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883
cites cdi_FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883
container_end_page
container_issue 9
container_start_page 95008
container_title Superconductor science & technology
container_volume 35
creator Talantsev, Evgeny F
description Stoichiometric near-room-temperature superconductors (NRTS) (for instance, H 3 S and LaH 10 ) exhibit a high ground-state upper critical field, B c2 (0) ⩾ 100 T, so that the magnetic phase diagram in these materials cannot be measured in non-destructive experiments. However, (Semenok et al 2022 Adv. Mater. ) proposed the idea of exploring the full magnetic phase diagram in NRTS samples, in which the superconducting order parameter is suppressed by magnetic element doping. If the elements areuniformly distributed in the material, then the theory of electron–phonon mediated superconductivity predicts the suppression of the order parameter in a 3D s -wave superconductor. (Semenok et al 2022 Adv. Mater. ) experimentally proved this idea by substituting lanthanum with the magnetic rare-earth neodymium in (La 1− x Nd x )H 10− y . As a result, the transition temperature in (La 1− x Nd x )H 10− y ( x = 0.09) was suppressed to T c ∼ 120 K, and the upper critical field decreased to B c2 ( T = 41 K) = 55 T. While the exact hydrogen content should be further established in the (La 1− x Nd x )H 10− y ( x = 0.09) (because similar T c suppression was observed in hydrogen-deficient LaH 10− y samples reported by Drozdov et al (2019 Nature 569 528)), a significant part of the full magnetic phase diagram for the (La 1− x Nd x )H 10− y ( x = 0.09) sample was measured. Here, we analyzed the reported (Semenok et al 2022 Adv. Mater. ) magnetoresistance data for (La 1− x Nd x )H 10− y ( x = 0.09) compressed at P = 180 GPa and deduced: (a) Debye temperature, T θ = 1156 ± 6 K ; (b) the electron–phonon coupling constant, λ e − ph = 1.65 ± 0.01 ; (c) the ground-state superconducting energy gap, Δ 0 = 20.2 ± 1.3 meV ; (d) the gap-to-transition temperature ratio, 2 Δ 0 k B T c = 4.0 ± 0.2 ; and (e) the relative jump in specific heat at transition temperature, Δ C γ T c = 1.68 ± 0.15 . The deduced values indicate that (La 1− x Nd x )H 10− y ( x = 0.09; P = 180 GPa) is a moderately strongly coupled s -wave superconductor.
doi_str_mv 10.1088/1361-6668/ac7d78
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_ac7d78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6668_ac7d78</sourcerecordid><originalsourceid>FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883</originalsourceid><addsrcrecordid>eNo90LFOwzAUBVALgUQo7Iz-gVA7Th1nhKpQpEgMdI9e7Jc2KLEj2wh1Y2SGP-yXkKqI6V5dPb3hEHLL2R1nSs25kDyVUqo56MIU6owk_9M5SVi5EGnGcnVJrkJ4Y4xzJbKEbFc96uidPXz-jDtnnaXavY99Z7dTsSGCjRSsoQ_LV-ohdi7QztIK1pSzw9f3nho3oqEfXdzRAbYWY6enQ48pgp827HFAG6_JRQt9wJu_nJHN42qzXKfVy9Pz8r5KtVIqlUVRKiy0yQFUrmSOpTZFgyVKkWvVtBqAY6sX2EDTNqxlTZlpECVnmZkUxIyw01vtXQge23r03QB-X3NWH53qI0p9RKlPTuIXwH5fow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Talantsev, Evgeny F</creator><creatorcontrib>Talantsev, Evgeny F</creatorcontrib><description>Stoichiometric near-room-temperature superconductors (NRTS) (for instance, H 3 S and LaH 10 ) exhibit a high ground-state upper critical field, B c2 (0) ⩾ 100 T, so that the magnetic phase diagram in these materials cannot be measured in non-destructive experiments. However, (Semenok et al 2022 Adv. Mater. ) proposed the idea of exploring the full magnetic phase diagram in NRTS samples, in which the superconducting order parameter is suppressed by magnetic element doping. If the elements areuniformly distributed in the material, then the theory of electron–phonon mediated superconductivity predicts the suppression of the order parameter in a 3D s -wave superconductor. (Semenok et al 2022 Adv. Mater. ) experimentally proved this idea by substituting lanthanum with the magnetic rare-earth neodymium in (La 1− x Nd x )H 10− y . As a result, the transition temperature in (La 1− x Nd x )H 10− y ( x = 0.09) was suppressed to T c ∼ 120 K, and the upper critical field decreased to B c2 ( T = 41 K) = 55 T. While the exact hydrogen content should be further established in the (La 1− x Nd x )H 10− y ( x = 0.09) (because similar T c suppression was observed in hydrogen-deficient LaH 10− y samples reported by Drozdov et al (2019 Nature 569 528)), a significant part of the full magnetic phase diagram for the (La 1− x Nd x )H 10− y ( x = 0.09) sample was measured. Here, we analyzed the reported (Semenok et al 2022 Adv. Mater. ) magnetoresistance data for (La 1− x Nd x )H 10− y ( x = 0.09) compressed at P = 180 GPa and deduced: (a) Debye temperature, T θ = 1156 ± 6 K ; (b) the electron–phonon coupling constant, λ e − ph = 1.65 ± 0.01 ; (c) the ground-state superconducting energy gap, Δ 0 = 20.2 ± 1.3 meV ; (d) the gap-to-transition temperature ratio, 2 Δ 0 k B T c = 4.0 ± 0.2 ; and (e) the relative jump in specific heat at transition temperature, Δ C γ T c = 1.68 ± 0.15 . The deduced values indicate that (La 1− x Nd x )H 10− y ( x = 0.09; P = 180 GPa) is a moderately strongly coupled s -wave superconductor.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ac7d78</identifier><language>eng</language><ispartof>Superconductor science &amp; technology, 2022-09, Vol.35 (9), p.95008</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883</citedby><cites>FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883</cites><orcidid>0000-0001-8970-7982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Talantsev, Evgeny F</creatorcontrib><title>Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element</title><title>Superconductor science &amp; technology</title><description>Stoichiometric near-room-temperature superconductors (NRTS) (for instance, H 3 S and LaH 10 ) exhibit a high ground-state upper critical field, B c2 (0) ⩾ 100 T, so that the magnetic phase diagram in these materials cannot be measured in non-destructive experiments. However, (Semenok et al 2022 Adv. Mater. ) proposed the idea of exploring the full magnetic phase diagram in NRTS samples, in which the superconducting order parameter is suppressed by magnetic element doping. If the elements areuniformly distributed in the material, then the theory of electron–phonon mediated superconductivity predicts the suppression of the order parameter in a 3D s -wave superconductor. (Semenok et al 2022 Adv. Mater. ) experimentally proved this idea by substituting lanthanum with the magnetic rare-earth neodymium in (La 1− x Nd x )H 10− y . As a result, the transition temperature in (La 1− x Nd x )H 10− y ( x = 0.09) was suppressed to T c ∼ 120 K, and the upper critical field decreased to B c2 ( T = 41 K) = 55 T. While the exact hydrogen content should be further established in the (La 1− x Nd x )H 10− y ( x = 0.09) (because similar T c suppression was observed in hydrogen-deficient LaH 10− y samples reported by Drozdov et al (2019 Nature 569 528)), a significant part of the full magnetic phase diagram for the (La 1− x Nd x )H 10− y ( x = 0.09) sample was measured. Here, we analyzed the reported (Semenok et al 2022 Adv. Mater. ) magnetoresistance data for (La 1− x Nd x )H 10− y ( x = 0.09) compressed at P = 180 GPa and deduced: (a) Debye temperature, T θ = 1156 ± 6 K ; (b) the electron–phonon coupling constant, λ e − ph = 1.65 ± 0.01 ; (c) the ground-state superconducting energy gap, Δ 0 = 20.2 ± 1.3 meV ; (d) the gap-to-transition temperature ratio, 2 Δ 0 k B T c = 4.0 ± 0.2 ; and (e) the relative jump in specific heat at transition temperature, Δ C γ T c = 1.68 ± 0.15 . The deduced values indicate that (La 1− x Nd x )H 10− y ( x = 0.09; P = 180 GPa) is a moderately strongly coupled s -wave superconductor.</description><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo90LFOwzAUBVALgUQo7Iz-gVA7Th1nhKpQpEgMdI9e7Jc2KLEj2wh1Y2SGP-yXkKqI6V5dPb3hEHLL2R1nSs25kDyVUqo56MIU6owk_9M5SVi5EGnGcnVJrkJ4Y4xzJbKEbFc96uidPXz-jDtnnaXavY99Z7dTsSGCjRSsoQ_LV-ohdi7QztIK1pSzw9f3nho3oqEfXdzRAbYWY6enQ48pgp827HFAG6_JRQt9wJu_nJHN42qzXKfVy9Pz8r5KtVIqlUVRKiy0yQFUrmSOpTZFgyVKkWvVtBqAY6sX2EDTNqxlTZlpECVnmZkUxIyw01vtXQge23r03QB-X3NWH53qI0p9RKlPTuIXwH5fow</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Talantsev, Evgeny F</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8970-7982</orcidid></search><sort><creationdate>20220901</creationdate><title>Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element</title><author>Talantsev, Evgeny F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talantsev, Evgeny F</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talantsev, Evgeny F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element</atitle><jtitle>Superconductor science &amp; technology</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>35</volume><issue>9</issue><spage>95008</spage><pages>95008-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><abstract>Stoichiometric near-room-temperature superconductors (NRTS) (for instance, H 3 S and LaH 10 ) exhibit a high ground-state upper critical field, B c2 (0) ⩾ 100 T, so that the magnetic phase diagram in these materials cannot be measured in non-destructive experiments. However, (Semenok et al 2022 Adv. Mater. ) proposed the idea of exploring the full magnetic phase diagram in NRTS samples, in which the superconducting order parameter is suppressed by magnetic element doping. If the elements areuniformly distributed in the material, then the theory of electron–phonon mediated superconductivity predicts the suppression of the order parameter in a 3D s -wave superconductor. (Semenok et al 2022 Adv. Mater. ) experimentally proved this idea by substituting lanthanum with the magnetic rare-earth neodymium in (La 1− x Nd x )H 10− y . As a result, the transition temperature in (La 1− x Nd x )H 10− y ( x = 0.09) was suppressed to T c ∼ 120 K, and the upper critical field decreased to B c2 ( T = 41 K) = 55 T. While the exact hydrogen content should be further established in the (La 1− x Nd x )H 10− y ( x = 0.09) (because similar T c suppression was observed in hydrogen-deficient LaH 10− y samples reported by Drozdov et al (2019 Nature 569 528)), a significant part of the full magnetic phase diagram for the (La 1− x Nd x )H 10− y ( x = 0.09) sample was measured. Here, we analyzed the reported (Semenok et al 2022 Adv. Mater. ) magnetoresistance data for (La 1− x Nd x )H 10− y ( x = 0.09) compressed at P = 180 GPa and deduced: (a) Debye temperature, T θ = 1156 ± 6 K ; (b) the electron–phonon coupling constant, λ e − ph = 1.65 ± 0.01 ; (c) the ground-state superconducting energy gap, Δ 0 = 20.2 ± 1.3 meV ; (d) the gap-to-transition temperature ratio, 2 Δ 0 k B T c = 4.0 ± 0.2 ; and (e) the relative jump in specific heat at transition temperature, Δ C γ T c = 1.68 ± 0.15 . The deduced values indicate that (La 1− x Nd x )H 10− y ( x = 0.09; P = 180 GPa) is a moderately strongly coupled s -wave superconductor.</abstract><doi>10.1088/1361-6668/ac7d78</doi><orcidid>https://orcid.org/0000-0001-8970-7982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2022-09, Vol.35 (9), p.95008
issn 0953-2048
1361-6668
language eng
recordid cdi_crossref_primary_10_1088_1361_6668_ac7d78
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Electron–phonon coupling constant and BCS ratios in LaH 10−y doped with magnetic rare-earth element
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%E2%80%93phonon%20coupling%20constant%20and%20BCS%20ratios%20in%20LaH%2010%E2%88%92y%20doped%20with%20magnetic%20rare-earth%20element&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Talantsev,%20Evgeny%20F&rft.date=2022-09-01&rft.volume=35&rft.issue=9&rft.spage=95008&rft.pages=95008-&rft.issn=0953-2048&rft.eissn=1361-6668&rft_id=info:doi/10.1088/1361-6668/ac7d78&rft_dat=%3Ccrossref%3E10_1088_1361_6668_ac7d78%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c888-67798e7cd4aa84864e9cd7be9e634c8bfcaa1efc5ebabfb0f0b92ca39102d0883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true