Loading…

Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics

Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics, but determinism can be achieved by compromising between fidelity and amplification power. We propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which show gre...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2016-02, Vol.18 (2), p.23028
Main Authors: Joo, Jaewoo, Elliott, Matthew, Oi, Daniel K L, Ginossar, Eran, Spiller, Timothy P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics, but determinism can be achieved by compromising between fidelity and amplification power. We propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which show great promise as a tool for quantum information processing. Our protocol is designed for strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external microwave controls to engineer a set of optimal state transfers and achieve high fidelity amplification. We compare analytical results with full simulations of the open, driven Jaynes-Cummings model, using realistic device parameters for state of the art superconducting circuits. Amplification with a fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level decoherence. This tool could be applied to practical continuous-variable information processing for the purification and stabilization of cat states in the presence of photon losses.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/18/2/023028