Loading…
High-fidelity non-adiabatic cutting and stitching of a spin chain via local control
We propose and analyze, focusing on non-adiabatic effects, a technique of manipulating quantum spin systems based on local 'cutting' and 'stitching' of the Heisenberg exchange coupling between the spins. This first operation is cutting of a bond separating a single spin from a li...
Saved in:
Published in: | New journal of physics 2018-10, Vol.20 (10), p.105006 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and analyze, focusing on non-adiabatic effects, a technique of manipulating quantum spin systems based on local 'cutting' and 'stitching' of the Heisenberg exchange coupling between the spins. This first operation is cutting of a bond separating a single spin from a linear chain, or of two neighboring bonds for a ring-shaped array of spins. We show that the disconnected spin can be in the ground state with a high-fidelity even after a non-adiabatic process. Next, we consider inverse operation of stitching these bonds to increase the system size. We show that the optimal control algorithm can be found by using common numerical procedures with a simple two-parametric control function able to produce a high-fidelity cutting and stitching. These results can be applied for manipulating ensembles of quantum dots, considered as prospective elements for quantum information technologies, and for design of machines based on quantum thermodynamics. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/aae4ac |