Loading…
Single photon pulse induced transient entanglement force
We show that a single photon pulse incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction...
Saved in:
Published in: | New journal of physics 2020-02, Vol.22 (2), p.23037 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that a single photon pulse incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction to the resonant dipole-dipole interaction (RDDI). We explicitly show that the RDDI force induced by the single photon pulse fundamentally arises from the two-body transient entanglement between the atoms. This single photon pulse induced entanglement force can be continuously tuned from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate that the entanglement force can be enhanced by more than three orders of magnitude if the atomic interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped single photon pulses as a powerful tool to manipulate this entanglement force and also provides a new approach to witness transient atom-atom entanglement. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ab6f92 |