Loading…

Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains

Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size t...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2022-09, Vol.24 (9), p.93003
Main Authors: Peng, Liangtao, Fu, Weicheng, Zhang, Yong, Zhao, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c369t-2b6a39580523be3566a0c050491d8c1214731e5a2dc922484997d5c86e7909513
container_end_page
container_issue 9
container_start_page 93003
container_title New journal of physics
container_volume 24
creator Peng, Liangtao
Fu, Weicheng
Zhang, Yong
Zhao, Hong
description Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size to observe whether they have the same behavior in different models. To this end, as illustrating examples, the instability dynamics of the N /2 mode in both the Fermi–Pasta–Ulam–Tsingou- α and - β chains under fixed boundary conditions are studied systematically. Applying the Floquet theory, we show that for both models the stability time T as a function of the perturbation strength λ follows the same behavior; i.e., T ∝ ( λ − λ c ) − 1 2 , where λ c is the instability threshold. The dependence of λ c on N is also obtained. The results of T and λ c agree well with those obtained by the direct molecular dynamics simulations. Finally, the effect of instability dynamics on the thermalization properties of a system is briefly discussed.
doi_str_mv 10.1088/1367-2630/ac8ac3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ac8ac3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b77c1605ed04f7c8ee4c1d7ba3a772b</doaj_id><sourcerecordid>2709348436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-2b6a39580523be3566a0c050491d8c1214731e5a2dc922484997d5c86e7909513</originalsourceid><addsrcrecordid>eNp1UbtOAzEQPCGQCIGe8iRaQvy486NEEYFISFAkFYW153MSR3d2sC9FOv6BP-RLcDgENFQzWs3Mrnay7BKjG4yEGGPK-IgwisagBWh6lA1-Rsd_-Gl2FuMGIYwFIYPsZeZiB5VtbLfP672D1uqY-2XuvGusMxASCy00eetrE3Pr8m5t8qkJrf14e3-G5E64aKBNMI_Wrfwu12uwLp5nJ0toorn4xmG2mN7NJw-jx6f72eT2caQpk92IVAyoLAUqCa0MLRkDpFGJColroTHBBafYlEBqLQkpRCElr0stmOESyRLTYTbrc2sPG7UNtoWwVx6s-hr4sFIQOqsbo4qKc40ZKk2NiiXXwphC45pXQIFzUqWsqz5rG_zrzsRObfwuuHS-IhxJmtZTllSoV-ngYwxm-bMVI3WoQx3-rQ7_Vn0dyXLdW6zf_mb-K_8ExvONag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709348436</pqid></control><display><type>article</type><title>Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Peng, Liangtao ; Fu, Weicheng ; Zhang, Yong ; Zhao, Hong</creator><creatorcontrib>Peng, Liangtao ; Fu, Weicheng ; Zhang, Yong ; Zhao, Hong</creatorcontrib><description>Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size to observe whether they have the same behavior in different models. To this end, as illustrating examples, the instability dynamics of the N /2 mode in both the Fermi–Pasta–Ulam–Tsingou- α and - β chains under fixed boundary conditions are studied systematically. Applying the Floquet theory, we show that for both models the stability time T as a function of the perturbation strength λ follows the same behavior; i.e., T ∝ ( λ − λ c ) − 1 2 , where λ c is the instability threshold. The dependence of λ c on N is also obtained. The results of T and λ c agree well with those obtained by the direct molecular dynamics simulations. Finally, the effect of instability dynamics on the thermalization properties of a system is briefly discussed.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac8ac3</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boundary conditions ; Chains ; Dynamic stability ; Energy ; Equilibrium ; Fermi–Pasta–Ulam–Tsingou chains ; Floquet theory ; Hamiltonian functions ; instability dynamics ; Molecular dynamics ; Nonlinear dynamics ; nonlinear normal modes ; Orbits ; Perturbation ; Physics ; Theoretical physics ; Thermalization (energy absorption)</subject><ispartof>New journal of physics, 2022-09, Vol.24 (9), p.93003</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-2b6a39580523be3566a0c050491d8c1214731e5a2dc922484997d5c86e7909513</cites><orcidid>0000-0001-5808-7936 ; 0000-0001-7667-1386 ; 0000-0002-5420-7985 ; 0000-0002-2102-674X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2709348436?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Peng, Liangtao</creatorcontrib><creatorcontrib>Fu, Weicheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><title>Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size to observe whether they have the same behavior in different models. To this end, as illustrating examples, the instability dynamics of the N /2 mode in both the Fermi–Pasta–Ulam–Tsingou- α and - β chains under fixed boundary conditions are studied systematically. Applying the Floquet theory, we show that for both models the stability time T as a function of the perturbation strength λ follows the same behavior; i.e., T ∝ ( λ − λ c ) − 1 2 , where λ c is the instability threshold. The dependence of λ c on N is also obtained. The results of T and λ c agree well with those obtained by the direct molecular dynamics simulations. Finally, the effect of instability dynamics on the thermalization properties of a system is briefly discussed.</description><subject>Boundary conditions</subject><subject>Chains</subject><subject>Dynamic stability</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Fermi–Pasta–Ulam–Tsingou chains</subject><subject>Floquet theory</subject><subject>Hamiltonian functions</subject><subject>instability dynamics</subject><subject>Molecular dynamics</subject><subject>Nonlinear dynamics</subject><subject>nonlinear normal modes</subject><subject>Orbits</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Theoretical physics</subject><subject>Thermalization (energy absorption)</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UbtOAzEQPCGQCIGe8iRaQvy486NEEYFISFAkFYW153MSR3d2sC9FOv6BP-RLcDgENFQzWs3Mrnay7BKjG4yEGGPK-IgwisagBWh6lA1-Rsd_-Gl2FuMGIYwFIYPsZeZiB5VtbLfP672D1uqY-2XuvGusMxASCy00eetrE3Pr8m5t8qkJrf14e3-G5E64aKBNMI_Wrfwu12uwLp5nJ0toorn4xmG2mN7NJw-jx6f72eT2caQpk92IVAyoLAUqCa0MLRkDpFGJColroTHBBafYlEBqLQkpRCElr0stmOESyRLTYTbrc2sPG7UNtoWwVx6s-hr4sFIQOqsbo4qKc40ZKk2NiiXXwphC45pXQIFzUqWsqz5rG_zrzsRObfwuuHS-IhxJmtZTllSoV-ngYwxm-bMVI3WoQx3-rQ7_Vn0dyXLdW6zf_mb-K_8ExvONag</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Peng, Liangtao</creator><creator>Fu, Weicheng</creator><creator>Zhang, Yong</creator><creator>Zhao, Hong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5808-7936</orcidid><orcidid>https://orcid.org/0000-0001-7667-1386</orcidid><orcidid>https://orcid.org/0000-0002-5420-7985</orcidid><orcidid>https://orcid.org/0000-0002-2102-674X</orcidid></search><sort><creationdate>20220901</creationdate><title>Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains</title><author>Peng, Liangtao ; Fu, Weicheng ; Zhang, Yong ; Zhao, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-2b6a39580523be3566a0c050491d8c1214731e5a2dc922484997d5c86e7909513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Chains</topic><topic>Dynamic stability</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Fermi–Pasta–Ulam–Tsingou chains</topic><topic>Floquet theory</topic><topic>Hamiltonian functions</topic><topic>instability dynamics</topic><topic>Molecular dynamics</topic><topic>Nonlinear dynamics</topic><topic>nonlinear normal modes</topic><topic>Orbits</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Theoretical physics</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Liangtao</creatorcontrib><creatorcontrib>Fu, Weicheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Liangtao</au><au>Fu, Weicheng</au><au>Zhang, Yong</au><au>Zhao, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>24</volume><issue>9</issue><spage>93003</spage><pages>93003-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size to observe whether they have the same behavior in different models. To this end, as illustrating examples, the instability dynamics of the N /2 mode in both the Fermi–Pasta–Ulam–Tsingou- α and - β chains under fixed boundary conditions are studied systematically. Applying the Floquet theory, we show that for both models the stability time T as a function of the perturbation strength λ follows the same behavior; i.e., T ∝ ( λ − λ c ) − 1 2 , where λ c is the instability threshold. The dependence of λ c on N is also obtained. The results of T and λ c agree well with those obtained by the direct molecular dynamics simulations. Finally, the effect of instability dynamics on the thermalization properties of a system is briefly discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac8ac3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5808-7936</orcidid><orcidid>https://orcid.org/0000-0001-7667-1386</orcidid><orcidid>https://orcid.org/0000-0002-5420-7985</orcidid><orcidid>https://orcid.org/0000-0002-2102-674X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2022-09, Vol.24 (9), p.93003
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ac8ac3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boundary conditions
Chains
Dynamic stability
Energy
Equilibrium
Fermi–Pasta–Ulam–Tsingou chains
Floquet theory
Hamiltonian functions
instability dynamics
Molecular dynamics
Nonlinear dynamics
nonlinear normal modes
Orbits
Perturbation
Physics
Theoretical physics
Thermalization (energy absorption)
title Instability dynamics of nonlinear normal modes in the Fermi–Pasta–Ulam–Tsingou chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20dynamics%20of%20nonlinear%20normal%20modes%20in%20the%20Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou%20chains&rft.jtitle=New%20journal%20of%20physics&rft.au=Peng,%20Liangtao&rft.date=2022-09-01&rft.volume=24&rft.issue=9&rft.spage=93003&rft.pages=93003-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac8ac3&rft_dat=%3Cproquest_cross%3E2709348436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-2b6a39580523be3566a0c050491d8c1214731e5a2dc922484997d5c86e7909513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709348436&rft_id=info:pmid/&rfr_iscdi=true