Loading…

Witnessing criticality in non-Hermitian systems via entopic uncertainty relation

Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2022-09, Vol.24 (9), p.93035
Main Authors: Guo, You-neng, Wang, Guo-you
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223
container_end_page
container_issue 9
container_start_page 93035
container_title New journal of physics
container_volume 24
creator Guo, You-neng
Wang, Guo-you
description Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.
doi_str_mv 10.1088/1367-2630/ac91ea
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ac91ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0e15368f161406989a7878473ad56a8</doaj_id><sourcerecordid>2718306390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</originalsourceid><addsrcrecordid>eNp1kc1LAzEQxRdRsFbvHhe8ujYfu_k4SlFbKOhB8RimSbakbJOapEL_e7euVC-eJjze-81kpiiuMbrDSIgJpoxXhFE0AS2xhZNidJRO_7zPi4uU1ghhLAgZFS_vLnubkvOrUkeXnYbO5X3pfOmDr2Y2bnoRfJn2KdtNKj8dlNbnsHW63HltYwbn-0C0HWQX_GVx1kKX7NVPHRdvjw-v01m1eH6aT-8XlaZM5goLxmuJhKTEGMpBsiVjmjbLWnNsNG4IbSQzCDBu6qYBCabRdW0Qbc2yJYSOi_nANQHWahvdBuJeBXDqWwhxpSD23-msAmRxQ5loMcM1YlJI4IKLmtMeykD0rJuBtY3hY2dTVuuwi74fXxGOBUWMStS70ODSMaQUbXvsipE63EAdlqwOS1bDDfrI7RBxYfvL_Nf-BU6PhxI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718306390</pqid></control><display><type>article</type><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><source>Publicly Available Content Database</source><creator>Guo, You-neng ; Wang, Guo-you</creator><creatorcontrib>Guo, You-neng ; Wang, Guo-you</creatorcontrib><description>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac91ea</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Critical phenomena ; Critical point ; Eigenvalues ; Eigenvectors ; entropic uncertainty relation ; exceptional points ; non-Hermitian systems ; Physics ; Uncertainty</subject><ispartof>New journal of physics, 2022-09, Vol.24 (9), p.93035</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</cites><orcidid>0000-0002-5668-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2718306390?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Guo, You-neng</creatorcontrib><creatorcontrib>Wang, Guo-you</creatorcontrib><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</description><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>entropic uncertainty relation</subject><subject>exceptional points</subject><subject>non-Hermitian systems</subject><subject>Physics</subject><subject>Uncertainty</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1LAzEQxRdRsFbvHhe8ujYfu_k4SlFbKOhB8RimSbakbJOapEL_e7euVC-eJjze-81kpiiuMbrDSIgJpoxXhFE0AS2xhZNidJRO_7zPi4uU1ghhLAgZFS_vLnubkvOrUkeXnYbO5X3pfOmDr2Y2bnoRfJn2KdtNKj8dlNbnsHW63HltYwbn-0C0HWQX_GVx1kKX7NVPHRdvjw-v01m1eH6aT-8XlaZM5goLxmuJhKTEGMpBsiVjmjbLWnNsNG4IbSQzCDBu6qYBCabRdW0Qbc2yJYSOi_nANQHWahvdBuJeBXDqWwhxpSD23-msAmRxQ5loMcM1YlJI4IKLmtMeykD0rJuBtY3hY2dTVuuwi74fXxGOBUWMStS70ODSMaQUbXvsipE63EAdlqwOS1bDDfrI7RBxYfvL_Nf-BU6PhxI</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Guo, You-neng</creator><creator>Wang, Guo-you</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5668-6764</orcidid></search><sort><creationdate>20220901</creationdate><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><author>Guo, You-neng ; Wang, Guo-you</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>entropic uncertainty relation</topic><topic>exceptional points</topic><topic>non-Hermitian systems</topic><topic>Physics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, You-neng</creatorcontrib><creatorcontrib>Wang, Guo-you</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, You-neng</au><au>Wang, Guo-you</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>24</volume><issue>9</issue><spage>93035</spage><pages>93035-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac91ea</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5668-6764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2022-09, Vol.24 (9), p.93035
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ac91ea
source Publicly Available Content Database
subjects Critical phenomena
Critical point
Eigenvalues
Eigenvectors
entropic uncertainty relation
exceptional points
non-Hermitian systems
Physics
Uncertainty
title Witnessing criticality in non-Hermitian systems via entopic uncertainty relation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Witnessing%20criticality%20in%20non-Hermitian%20systems%20via%20entopic%20uncertainty%20relation&rft.jtitle=New%20journal%20of%20physics&rft.au=Guo,%20You-neng&rft.date=2022-09-01&rft.volume=24&rft.issue=9&rft.spage=93035&rft.pages=93035-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac91ea&rft_dat=%3Cproquest_cross%3E2718306390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718306390&rft_id=info:pmid/&rfr_iscdi=true