Loading…
Witnessing criticality in non-Hermitian systems via entopic uncertainty relation
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the...
Saved in:
Published in: | New journal of physics 2022-09, Vol.24 (9), p.93035 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223 |
container_end_page | |
container_issue | 9 |
container_start_page | 93035 |
container_title | New journal of physics |
container_volume | 24 |
creator | Guo, You-neng Wang, Guo-you |
description | Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation. |
doi_str_mv | 10.1088/1367-2630/ac91ea |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ac91ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0e15368f161406989a7878473ad56a8</doaj_id><sourcerecordid>2718306390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</originalsourceid><addsrcrecordid>eNp1kc1LAzEQxRdRsFbvHhe8ujYfu_k4SlFbKOhB8RimSbakbJOapEL_e7euVC-eJjze-81kpiiuMbrDSIgJpoxXhFE0AS2xhZNidJRO_7zPi4uU1ghhLAgZFS_vLnubkvOrUkeXnYbO5X3pfOmDr2Y2bnoRfJn2KdtNKj8dlNbnsHW63HltYwbn-0C0HWQX_GVx1kKX7NVPHRdvjw-v01m1eH6aT-8XlaZM5goLxmuJhKTEGMpBsiVjmjbLWnNsNG4IbSQzCDBu6qYBCabRdW0Qbc2yJYSOi_nANQHWahvdBuJeBXDqWwhxpSD23-msAmRxQ5loMcM1YlJI4IKLmtMeykD0rJuBtY3hY2dTVuuwi74fXxGOBUWMStS70ODSMaQUbXvsipE63EAdlqwOS1bDDfrI7RBxYfvL_Nf-BU6PhxI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718306390</pqid></control><display><type>article</type><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><source>Publicly Available Content Database</source><creator>Guo, You-neng ; Wang, Guo-you</creator><creatorcontrib>Guo, You-neng ; Wang, Guo-you</creatorcontrib><description>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac91ea</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Critical phenomena ; Critical point ; Eigenvalues ; Eigenvectors ; entropic uncertainty relation ; exceptional points ; non-Hermitian systems ; Physics ; Uncertainty</subject><ispartof>New journal of physics, 2022-09, Vol.24 (9), p.93035</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</cites><orcidid>0000-0002-5668-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2718306390?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Guo, You-neng</creatorcontrib><creatorcontrib>Wang, Guo-you</creatorcontrib><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</description><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>entropic uncertainty relation</subject><subject>exceptional points</subject><subject>non-Hermitian systems</subject><subject>Physics</subject><subject>Uncertainty</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1LAzEQxRdRsFbvHhe8ujYfu_k4SlFbKOhB8RimSbakbJOapEL_e7euVC-eJjze-81kpiiuMbrDSIgJpoxXhFE0AS2xhZNidJRO_7zPi4uU1ghhLAgZFS_vLnubkvOrUkeXnYbO5X3pfOmDr2Y2bnoRfJn2KdtNKj8dlNbnsHW63HltYwbn-0C0HWQX_GVx1kKX7NVPHRdvjw-v01m1eH6aT-8XlaZM5goLxmuJhKTEGMpBsiVjmjbLWnNsNG4IbSQzCDBu6qYBCabRdW0Qbc2yJYSOi_nANQHWahvdBuJeBXDqWwhxpSD23-msAmRxQ5loMcM1YlJI4IKLmtMeykD0rJuBtY3hY2dTVuuwi74fXxGOBUWMStS70ODSMaQUbXvsipE63EAdlqwOS1bDDfrI7RBxYfvL_Nf-BU6PhxI</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Guo, You-neng</creator><creator>Wang, Guo-you</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5668-6764</orcidid></search><sort><creationdate>20220901</creationdate><title>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</title><author>Guo, You-neng ; Wang, Guo-you</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>entropic uncertainty relation</topic><topic>exceptional points</topic><topic>non-Hermitian systems</topic><topic>Physics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, You-neng</creatorcontrib><creatorcontrib>Wang, Guo-you</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, You-neng</au><au>Wang, Guo-you</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Witnessing criticality in non-Hermitian systems via entopic uncertainty relation</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>24</volume><issue>9</issue><spage>93035</spage><pages>93035-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we propose an alternative and accurate proposal based on the entropy uncertainty relation (EUR) to detect the exceptional points and identify different phases of the non-Hermitian systems. In particular, we reveal a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitary Hermitian dynamics, the behaviors of EUR in the non-Hermitian system are well defined into two different ways depending on whether the system is located in unbroken or broken phase regimes. In the unbroken phase regime where EUR undergoes an oscillatory behavior, while in the broken phase regime where the oscillation of EUR breaks down. Moreover, we identify the critical phenomena of non-Hermitian systems in terms of the EUR in the dynamical limit. It is found that the EUR can detect exactly the critical points of non-Hermitian systems beyond (anti-)PT symmetric systems. Finally, we comment on the prospective experimental situation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac91ea</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5668-6764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2022-09, Vol.24 (9), p.93035 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_ac91ea |
source | Publicly Available Content Database |
subjects | Critical phenomena Critical point Eigenvalues Eigenvectors entropic uncertainty relation exceptional points non-Hermitian systems Physics Uncertainty |
title | Witnessing criticality in non-Hermitian systems via entopic uncertainty relation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Witnessing%20criticality%20in%20non-Hermitian%20systems%20via%20entopic%20uncertainty%20relation&rft.jtitle=New%20journal%20of%20physics&rft.au=Guo,%20You-neng&rft.date=2022-09-01&rft.volume=24&rft.issue=9&rft.spage=93035&rft.pages=93035-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac91ea&rft_dat=%3Cproquest_cross%3E2718306390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-18674908932dd37a96b66c35b4c71dc1523596d0a115455a9ad5c44d03fdbf223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718306390&rft_id=info:pmid/&rfr_iscdi=true |