Loading…

The fastest generation of multipartite entanglement with natural interactions

Natural interactions among multiple quantum objects are fundamentally composed of two-body terms only. In contradistinction, single global unitaries that generate highly entangled states typically arise from Hamiltonians that couple multiple individual subsystems simultaneously. Here, we study the t...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2023-09, Vol.25 (9), p.93040
Main Authors: Cieśliński, Paweł, Kłobus, Waldemar, Kurzyński, Paweł, Paterek, Tomasz, Laskowski, Wiesław
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Natural interactions among multiple quantum objects are fundamentally composed of two-body terms only. In contradistinction, single global unitaries that generate highly entangled states typically arise from Hamiltonians that couple multiple individual subsystems simultaneously. Here, we study the time to produce strongly nonclassical multipartite correlations with a single unitary generated by the natural interactions. We restrict the symmetry of two-body interactions to match the symmetry of the target states and focus on the fastest generation of multipartite entangled Greenberger–Horne–Zeilinger, W, Dicke and absolutely maximally entangled states for up to seven qubits. These results are obtained by constraining the energy in the system and accordingly can be seen as state-dependent quantum speed limits for symmetry-adjusted natural interactions. They give rise to a counter-intuitive effect where the creation of particular entangled states with an increasing number of particles does not require more time. The methods used rely on extensive numerical simulations and analytical estimations.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/acf953