Loading…
Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations
The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to th...
Saved in:
Published in: | Physica scripta 2021-09, Vol.96 (9), p.95201 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3 |
container_end_page | |
container_issue | 9 |
container_start_page | 95201 |
container_title | Physica scripta |
container_volume | 96 |
creator | Chen, Si-Jia Lü, Xing Li, Meng-Gang Wang, Fang |
description | The
N
-rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method.
M
-lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma. |
doi_str_mv | 10.1088/1402-4896/abf307 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_abf307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psabf307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYkitadSbppc5T1E1a86NWQtgl2aZuatCv-e1srnvQ0zMs7D8xDyDHCJUKaLjAGFsWpFAudWQ7JDpn9RrtkBsAxSmUs98lBCBsAJpiQM_J6bXy51V3pGqqbgoay7qtpdZZ2b4Y-RlVftzS4qh_jQDtHuw9HT9k5nkVFWZsmDLmuaOOaqmyM9tS899-McEj2rK6COfqZc_Jye_O8uo_WT3cPq6t1lHPELmJcZxpNLizmuQAJAlMwScYk10vIChkjQ5MIXqAWuDQiTzMDFo3MkyK2ls8JTNzcuxC8sar1Za39p0JQox81ylCjDDX5GU5OppPStWrjej-8EFQb1FCRCuSSAaq2GNkXfxT_5X4BYeJ0mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><source>Institute of Physics</source><creator>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</creator><creatorcontrib>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</creatorcontrib><description>The
N
-rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method.
M
-lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/abf307</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>M-lump solutions ; Nonlinear evolution equations ; Nonlinear phenomena</subject><ispartof>Physica scripta, 2021-09, Vol.96 (9), p.95201</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</citedby><cites>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Si-Jia</creatorcontrib><creatorcontrib>Lü, Xing</creatorcontrib><creatorcontrib>Li, Meng-Gang</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The
N
-rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method.
M
-lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</description><subject>M-lump solutions</subject><subject>Nonlinear evolution equations</subject><subject>Nonlinear phenomena</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYkitadSbppc5T1E1a86NWQtgl2aZuatCv-e1srnvQ0zMs7D8xDyDHCJUKaLjAGFsWpFAudWQ7JDpn9RrtkBsAxSmUs98lBCBsAJpiQM_J6bXy51V3pGqqbgoay7qtpdZZ2b4Y-RlVftzS4qh_jQDtHuw9HT9k5nkVFWZsmDLmuaOOaqmyM9tS899-McEj2rK6COfqZc_Jye_O8uo_WT3cPq6t1lHPELmJcZxpNLizmuQAJAlMwScYk10vIChkjQ5MIXqAWuDQiTzMDFo3MkyK2ls8JTNzcuxC8sar1Za39p0JQox81ylCjDDX5GU5OppPStWrjej-8EFQb1FCRCuSSAaq2GNkXfxT_5X4BYeJ0mA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Si-Jia</creator><creator>Lü, Xing</creator><creator>Li, Meng-Gang</creator><creator>Wang, Fang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><author>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>M-lump solutions</topic><topic>Nonlinear evolution equations</topic><topic>Nonlinear phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Si-Jia</creatorcontrib><creatorcontrib>Lü, Xing</creatorcontrib><creatorcontrib>Li, Meng-Gang</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Si-Jia</au><au>Lü, Xing</au><au>Li, Meng-Gang</au><au>Wang, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>96</volume><issue>9</issue><spage>95201</spage><pages>95201-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The
N
-rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method.
M
-lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/abf307</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2021-09, Vol.96 (9), p.95201 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_abf307 |
source | Institute of Physics |
subjects | M-lump solutions Nonlinear evolution equations Nonlinear phenomena |
title | Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20simulation%20of%20the%20M-lump%20solutions%20to%20two%20(2+1)-dimensional%20nonlinear%20equations&rft.jtitle=Physica%20scripta&rft.au=Chen,%20Si-Jia&rft.date=2021-09-01&rft.volume=96&rft.issue=9&rft.spage=95201&rft.pages=95201-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/abf307&rft_dat=%3Ciop_cross%3Epsabf307%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |