Loading…

Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations

The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to th...

Full description

Saved in:
Bibliographic Details
Published in:Physica scripta 2021-09, Vol.96 (9), p.95201
Main Authors: Chen, Si-Jia, Lü, Xing, Li, Meng-Gang, Wang, Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3
cites cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3
container_end_page
container_issue 9
container_start_page 95201
container_title Physica scripta
container_volume 96
creator Chen, Si-Jia
Lü, Xing
Li, Meng-Gang
Wang, Fang
description The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.
doi_str_mv 10.1088/1402-4896/abf307
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_abf307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psabf307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYkitadSbppc5T1E1a86NWQtgl2aZuatCv-e1srnvQ0zMs7D8xDyDHCJUKaLjAGFsWpFAudWQ7JDpn9RrtkBsAxSmUs98lBCBsAJpiQM_J6bXy51V3pGqqbgoay7qtpdZZ2b4Y-RlVftzS4qh_jQDtHuw9HT9k5nkVFWZsmDLmuaOOaqmyM9tS899-McEj2rK6COfqZc_Jye_O8uo_WT3cPq6t1lHPELmJcZxpNLizmuQAJAlMwScYk10vIChkjQ5MIXqAWuDQiTzMDFo3MkyK2ls8JTNzcuxC8sar1Za39p0JQox81ylCjDDX5GU5OppPStWrjej-8EFQb1FCRCuSSAaq2GNkXfxT_5X4BYeJ0mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><source>Institute of Physics</source><creator>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</creator><creatorcontrib>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</creatorcontrib><description>The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/abf307</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>M-lump solutions ; Nonlinear evolution equations ; Nonlinear phenomena</subject><ispartof>Physica scripta, 2021-09, Vol.96 (9), p.95201</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</citedby><cites>FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Si-Jia</creatorcontrib><creatorcontrib>Lü, Xing</creatorcontrib><creatorcontrib>Li, Meng-Gang</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</description><subject>M-lump solutions</subject><subject>Nonlinear evolution equations</subject><subject>Nonlinear phenomena</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYkitadSbppc5T1E1a86NWQtgl2aZuatCv-e1srnvQ0zMs7D8xDyDHCJUKaLjAGFsWpFAudWQ7JDpn9RrtkBsAxSmUs98lBCBsAJpiQM_J6bXy51V3pGqqbgoay7qtpdZZ2b4Y-RlVftzS4qh_jQDtHuw9HT9k5nkVFWZsmDLmuaOOaqmyM9tS899-McEj2rK6COfqZc_Jye_O8uo_WT3cPq6t1lHPELmJcZxpNLizmuQAJAlMwScYk10vIChkjQ5MIXqAWuDQiTzMDFo3MkyK2ls8JTNzcuxC8sar1Za39p0JQox81ylCjDDX5GU5OppPStWrjej-8EFQb1FCRCuSSAaq2GNkXfxT_5X4BYeJ0mA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Si-Jia</creator><creator>Lü, Xing</creator><creator>Li, Meng-Gang</creator><creator>Wang, Fang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</title><author>Chen, Si-Jia ; Lü, Xing ; Li, Meng-Gang ; Wang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>M-lump solutions</topic><topic>Nonlinear evolution equations</topic><topic>Nonlinear phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Si-Jia</creatorcontrib><creatorcontrib>Lü, Xing</creatorcontrib><creatorcontrib>Li, Meng-Gang</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Si-Jia</au><au>Lü, Xing</au><au>Li, Meng-Gang</au><au>Wang, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>96</volume><issue>9</issue><spage>95201</spage><pages>95201-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The N -rational solutions to two (2+1)-dimensional nonlinear evolution equations are constructed by utilizing the long wave limit method. M -lump solutions to the two equations are derived by making some parameters conjugate to each other. We present and discuss the 1-, 2- and 3-lump solutions to the two equations. The amplitude and shape of the one lump wave remain unchanged during the propagation. The dynamic properties of the collisions among multiple lump waves are analyzed, which indicate that the fusion and fission of multiple lump waves might occur. The multiple lump waves might merge into one lump wave, then split into multiple lump waves. The lines which multiple lump waves follow are various if we choose different parameters. These results are helpful to describe some nonlinear phenomena in the areas of optics, fluid dynamics and plasma.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/abf307</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2021-09, Vol.96 (9), p.95201
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_abf307
source Institute of Physics
subjects M-lump solutions
Nonlinear evolution equations
Nonlinear phenomena
title Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20simulation%20of%20the%20M-lump%20solutions%20to%20two%20(2+1)-dimensional%20nonlinear%20equations&rft.jtitle=Physica%20scripta&rft.au=Chen,%20Si-Jia&rft.date=2021-09-01&rft.volume=96&rft.issue=9&rft.spage=95201&rft.pages=95201-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/abf307&rft_dat=%3Ciop_cross%3Epsabf307%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-23aba1ec6f1cc60906180e7b293a50bd94121e763d1a615e6c8be0f1e9c7d4ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true