Loading…
Tunable polarization comb based on the electromagnetically induced transparency with hybrid metal-graphene metamaterial
Noted a linear-to-circular polarization comb based on electromagnetically induced transparency (EIT) with hybrid metal-graphene metamaterial in terahertz (THz) spectroscopy. Due to the near field coupling between the bright mode of metal cut-wire (MCW) and multiple dark modes, the multi-peak EIT eff...
Saved in:
Published in: | Physica scripta 2021-12, Vol.96 (12), p.125539 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Noted a linear-to-circular polarization comb based on electromagnetically induced transparency (EIT) with hybrid metal-graphene metamaterial in terahertz (THz) spectroscopy. Due to the near field coupling between the bright mode of metal cut-wire (MCW) and multiple dark modes, the multi-peak EIT effect is exhibited under the
x
-polarized incidence supported by the three-level theory. With another orthogonal MCW etched on the back of the SiO
2
, the asymmetry responses in both polarized incidences (
x
- and
y
-polarized waves) further triggers the linear-to-circular polarization conversion (LTCPC). The values of four corresponding circular-polarized frequencies combined with transmission coefficients respectively are 0.90 THz with 0.45, 1.02 THz with 0.64, 1.15 THz with 0.60, 1.32 THz with 0.53, confirmed via relevant axial ratios and the electric field distributions. On the other hand, the drastic phase changes in transparent windows raise high group delays, among which the maximum value approaches 325 ps. Additionally, DC-voltage-driven graphene strips are doped at both ends of the back MCW to enhance the reconfigurability, superior tunable transmission behaviors illuminated by
y
-polarization with obvious changes at 0.90 THz and 1.02 THz can be achieved with the dynamic Fermi level fluctuating between 0.01 eV and 0.8 eV. Such an implementation creates a novel path to polarization modulators, signal transceivers, and information transmission devices. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ac454b |