Loading…
An effective hydrodynamic description of marching locusts
A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if su...
Saved in:
Published in: | Physical biology 2024-03, Vol.21 (2), p.26004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353 |
container_end_page | |
container_issue | 2 |
container_start_page | 26004 |
container_title | Physical biology |
container_volume | 21 |
creator | Gorbonos, Dan Oberhauser, Felix B Costello, Luke L Günzel, Yannick Couzin-Fuchs, Einat Koger, Benjamin Couzin, Iain D |
description | A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms. |
doi_str_mv | 10.1088/1478-3975/ad2219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1478_3975_ad2219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918515047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EolDYmVAmxEDp2U6ceKwqXlIlFpgtxw_qKomDnSD135MqpWKA6U6n714fQlcY7jEUxRyneTGjPM_mUhOC-RE6O5SOf-UTdB7jBoBwAvkpmtCCMEZ4eob4okmMtUZ17ssk660OXm8bWTuVaBNVcG3nfJN4m9QyqLVrPpLKqz528QKdWFlFc7mPU_T--PC2fJ6tXp9elovVTFFGuhnTeW4hLTlmGDLAOQabU40JBYsls1KVWNKUAIVCQ2mMykpdpIZbNtxIMzpFt-PcNvjP3sRO1C4qU1WyMb6PgnBcZDiDNB9QGFEVfIzBWNEGN9y9FRjETpjYGRE7I2IUNrRc76f3ZW30oeHH0ADcjIDzrdj4PjTDs6ItBcGCCCAMIBWttgN49wf47-JvM1l_kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918515047</pqid></control><display><type>article</type><title>An effective hydrodynamic description of marching locusts</title><source>Institute of Physics</source><creator>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</creator><creatorcontrib>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</creatorcontrib><description>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/ad2219</identifier><identifier>PMID: 38266294</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>active fluids ; collective motion ; locust</subject><ispartof>Physical biology, 2024-03, Vol.21 (2), p.26004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</cites><orcidid>0000-0001-8556-4558 ; 0000-0001-7553-4742 ; 0000-0001-5269-345X ; 0009-0001-3814-3395 ; 0000-0002-9278-2497 ; 0000-0001-7092-5314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38266294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorbonos, Dan</creatorcontrib><creatorcontrib>Oberhauser, Felix B</creatorcontrib><creatorcontrib>Costello, Luke L</creatorcontrib><creatorcontrib>Günzel, Yannick</creatorcontrib><creatorcontrib>Couzin-Fuchs, Einat</creatorcontrib><creatorcontrib>Koger, Benjamin</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><title>An effective hydrodynamic description of marching locusts</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</description><subject>active fluids</subject><subject>collective motion</subject><subject>locust</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQgC0EolDYmVAmxEDp2U6ceKwqXlIlFpgtxw_qKomDnSD135MqpWKA6U6n714fQlcY7jEUxRyneTGjPM_mUhOC-RE6O5SOf-UTdB7jBoBwAvkpmtCCMEZ4eob4okmMtUZ17ssk660OXm8bWTuVaBNVcG3nfJN4m9QyqLVrPpLKqz528QKdWFlFc7mPU_T--PC2fJ6tXp9elovVTFFGuhnTeW4hLTlmGDLAOQabU40JBYsls1KVWNKUAIVCQ2mMykpdpIZbNtxIMzpFt-PcNvjP3sRO1C4qU1WyMb6PgnBcZDiDNB9QGFEVfIzBWNEGN9y9FRjETpjYGRE7I2IUNrRc76f3ZW30oeHH0ADcjIDzrdj4PjTDs6ItBcGCCCAMIBWttgN49wf47-JvM1l_kg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Gorbonos, Dan</creator><creator>Oberhauser, Felix B</creator><creator>Costello, Luke L</creator><creator>Günzel, Yannick</creator><creator>Couzin-Fuchs, Einat</creator><creator>Koger, Benjamin</creator><creator>Couzin, Iain D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8556-4558</orcidid><orcidid>https://orcid.org/0000-0001-7553-4742</orcidid><orcidid>https://orcid.org/0000-0001-5269-345X</orcidid><orcidid>https://orcid.org/0009-0001-3814-3395</orcidid><orcidid>https://orcid.org/0000-0002-9278-2497</orcidid><orcidid>https://orcid.org/0000-0001-7092-5314</orcidid></search><sort><creationdate>20240301</creationdate><title>An effective hydrodynamic description of marching locusts</title><author>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active fluids</topic><topic>collective motion</topic><topic>locust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbonos, Dan</creatorcontrib><creatorcontrib>Oberhauser, Felix B</creatorcontrib><creatorcontrib>Costello, Luke L</creatorcontrib><creatorcontrib>Günzel, Yannick</creatorcontrib><creatorcontrib>Couzin-Fuchs, Einat</creatorcontrib><creatorcontrib>Koger, Benjamin</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbonos, Dan</au><au>Oberhauser, Felix B</au><au>Costello, Luke L</au><au>Günzel, Yannick</au><au>Couzin-Fuchs, Einat</au><au>Koger, Benjamin</au><au>Couzin, Iain D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective hydrodynamic description of marching locusts</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>26004</spage><pages>26004-</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38266294</pmid><doi>10.1088/1478-3975/ad2219</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8556-4558</orcidid><orcidid>https://orcid.org/0000-0001-7553-4742</orcidid><orcidid>https://orcid.org/0000-0001-5269-345X</orcidid><orcidid>https://orcid.org/0009-0001-3814-3395</orcidid><orcidid>https://orcid.org/0000-0002-9278-2497</orcidid><orcidid>https://orcid.org/0000-0001-7092-5314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3975 |
ispartof | Physical biology, 2024-03, Vol.21 (2), p.26004 |
issn | 1478-3975 1478-3967 1478-3975 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1478_3975_ad2219 |
source | Institute of Physics |
subjects | active fluids collective motion locust |
title | An effective hydrodynamic description of marching locusts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20hydrodynamic%20description%20of%20marching%20locusts&rft.jtitle=Physical%20biology&rft.au=Gorbonos,%20Dan&rft.date=2024-03-01&rft.volume=21&rft.issue=2&rft.spage=26004&rft.pages=26004-&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/ad2219&rft_dat=%3Cproquest_cross%3E2918515047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918515047&rft_id=info:pmid/38266294&rfr_iscdi=true |