Loading…

An effective hydrodynamic description of marching locusts

A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if su...

Full description

Saved in:
Bibliographic Details
Published in:Physical biology 2024-03, Vol.21 (2), p.26004
Main Authors: Gorbonos, Dan, Oberhauser, Felix B, Costello, Luke L, Günzel, Yannick, Couzin-Fuchs, Einat, Koger, Benjamin, Couzin, Iain D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353
container_end_page
container_issue 2
container_start_page 26004
container_title Physical biology
container_volume 21
creator Gorbonos, Dan
Oberhauser, Felix B
Costello, Luke L
Günzel, Yannick
Couzin-Fuchs, Einat
Koger, Benjamin
Couzin, Iain D
description A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.
doi_str_mv 10.1088/1478-3975/ad2219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1478_3975_ad2219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918515047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EolDYmVAmxEDp2U6ceKwqXlIlFpgtxw_qKomDnSD135MqpWKA6U6n714fQlcY7jEUxRyneTGjPM_mUhOC-RE6O5SOf-UTdB7jBoBwAvkpmtCCMEZ4eob4okmMtUZ17ssk660OXm8bWTuVaBNVcG3nfJN4m9QyqLVrPpLKqz528QKdWFlFc7mPU_T--PC2fJ6tXp9elovVTFFGuhnTeW4hLTlmGDLAOQabU40JBYsls1KVWNKUAIVCQ2mMykpdpIZbNtxIMzpFt-PcNvjP3sRO1C4qU1WyMb6PgnBcZDiDNB9QGFEVfIzBWNEGN9y9FRjETpjYGRE7I2IUNrRc76f3ZW30oeHH0ADcjIDzrdj4PjTDs6ItBcGCCCAMIBWttgN49wf47-JvM1l_kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918515047</pqid></control><display><type>article</type><title>An effective hydrodynamic description of marching locusts</title><source>Institute of Physics</source><creator>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</creator><creatorcontrib>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</creatorcontrib><description>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/ad2219</identifier><identifier>PMID: 38266294</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>active fluids ; collective motion ; locust</subject><ispartof>Physical biology, 2024-03, Vol.21 (2), p.26004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</cites><orcidid>0000-0001-8556-4558 ; 0000-0001-7553-4742 ; 0000-0001-5269-345X ; 0009-0001-3814-3395 ; 0000-0002-9278-2497 ; 0000-0001-7092-5314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38266294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorbonos, Dan</creatorcontrib><creatorcontrib>Oberhauser, Felix B</creatorcontrib><creatorcontrib>Costello, Luke L</creatorcontrib><creatorcontrib>Günzel, Yannick</creatorcontrib><creatorcontrib>Couzin-Fuchs, Einat</creatorcontrib><creatorcontrib>Koger, Benjamin</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><title>An effective hydrodynamic description of marching locusts</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</description><subject>active fluids</subject><subject>collective motion</subject><subject>locust</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQgC0EolDYmVAmxEDp2U6ceKwqXlIlFpgtxw_qKomDnSD135MqpWKA6U6n714fQlcY7jEUxRyneTGjPM_mUhOC-RE6O5SOf-UTdB7jBoBwAvkpmtCCMEZ4eob4okmMtUZ17ssk660OXm8bWTuVaBNVcG3nfJN4m9QyqLVrPpLKqz528QKdWFlFc7mPU_T--PC2fJ6tXp9elovVTFFGuhnTeW4hLTlmGDLAOQabU40JBYsls1KVWNKUAIVCQ2mMykpdpIZbNtxIMzpFt-PcNvjP3sRO1C4qU1WyMb6PgnBcZDiDNB9QGFEVfIzBWNEGN9y9FRjETpjYGRE7I2IUNrRc76f3ZW30oeHH0ADcjIDzrdj4PjTDs6ItBcGCCCAMIBWttgN49wf47-JvM1l_kg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Gorbonos, Dan</creator><creator>Oberhauser, Felix B</creator><creator>Costello, Luke L</creator><creator>Günzel, Yannick</creator><creator>Couzin-Fuchs, Einat</creator><creator>Koger, Benjamin</creator><creator>Couzin, Iain D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8556-4558</orcidid><orcidid>https://orcid.org/0000-0001-7553-4742</orcidid><orcidid>https://orcid.org/0000-0001-5269-345X</orcidid><orcidid>https://orcid.org/0009-0001-3814-3395</orcidid><orcidid>https://orcid.org/0000-0002-9278-2497</orcidid><orcidid>https://orcid.org/0000-0001-7092-5314</orcidid></search><sort><creationdate>20240301</creationdate><title>An effective hydrodynamic description of marching locusts</title><author>Gorbonos, Dan ; Oberhauser, Felix B ; Costello, Luke L ; Günzel, Yannick ; Couzin-Fuchs, Einat ; Koger, Benjamin ; Couzin, Iain D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active fluids</topic><topic>collective motion</topic><topic>locust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbonos, Dan</creatorcontrib><creatorcontrib>Oberhauser, Felix B</creatorcontrib><creatorcontrib>Costello, Luke L</creatorcontrib><creatorcontrib>Günzel, Yannick</creatorcontrib><creatorcontrib>Couzin-Fuchs, Einat</creatorcontrib><creatorcontrib>Koger, Benjamin</creatorcontrib><creatorcontrib>Couzin, Iain D</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbonos, Dan</au><au>Oberhauser, Felix B</au><au>Costello, Luke L</au><au>Günzel, Yannick</au><au>Couzin-Fuchs, Einat</au><au>Koger, Benjamin</au><au>Couzin, Iain D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective hydrodynamic description of marching locusts</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>26004</spage><pages>26004-</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>A fundamental question in complex systems is how to relate interactions between individual components ("microscopic description") to the global properties of the system ("macroscopic description"). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form "marching bands". These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective "pressure" of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38266294</pmid><doi>10.1088/1478-3975/ad2219</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8556-4558</orcidid><orcidid>https://orcid.org/0000-0001-7553-4742</orcidid><orcidid>https://orcid.org/0000-0001-5269-345X</orcidid><orcidid>https://orcid.org/0009-0001-3814-3395</orcidid><orcidid>https://orcid.org/0000-0002-9278-2497</orcidid><orcidid>https://orcid.org/0000-0001-7092-5314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-3975
ispartof Physical biology, 2024-03, Vol.21 (2), p.26004
issn 1478-3975
1478-3967
1478-3975
language eng
recordid cdi_crossref_primary_10_1088_1478_3975_ad2219
source Institute of Physics
subjects active fluids
collective motion
locust
title An effective hydrodynamic description of marching locusts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20hydrodynamic%20description%20of%20marching%20locusts&rft.jtitle=Physical%20biology&rft.au=Gorbonos,%20Dan&rft.date=2024-03-01&rft.volume=21&rft.issue=2&rft.spage=26004&rft.pages=26004-&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/ad2219&rft_dat=%3Cproquest_cross%3E2918515047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-6d77f04b91610501710f73d1230f1a6facb1a3420308d0beec5bd84e9f6266353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918515047&rft_id=info:pmid/38266294&rfr_iscdi=true