Loading…

Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm−3 accompa...

Full description

Saved in:
Bibliographic Details
Published in:Laser physics letters 2018-06, Vol.15 (6), p.65401
Main Authors: Pushkin, A V, Bychkov, A S, Karabutov, A A, Potemkin, F V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3
cites cdi_FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3
container_end_page
container_issue 6
container_start_page 65401
container_title Laser physics letters
container_volume 15
creator Pushkin, A V
Bychkov, A S
Karabutov, A A
Potemkin, F V
description The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm−3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75-2.0 J cm−2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm−2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.
doi_str_mv 10.1088/1612-202X/aaba4e
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1612_202X_aaba4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>lplaaba4e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgre5dZufGsclkkplZSvFRKAjShbuQp02dTsZkpurfm6GlKxEu93HuuQ8OANcY3WFUVTPMcJ7lKH-bCSFFYU7A5AidHnOMz8FFjBuECKJlPQGfc7Fzveidb6FoNYxrrz7gl9iZCM3WxTg2kvVrA4N7dxpKP7RahB_obeL1JsBUJ791Olu8wla0Phrl065GxIR3QxMNNN_qcOYSnFmRoKtDnILV48Nq_pwtX54W8_tlpgjO-6xUqJK5pEqKmlmFC1taUlpEGZVE1rhkqNaizItcSVbZWjJJNSEGl5QYZskUoP1aFXyMwVjeBbdNf3OM-KgYHyXhozx8r1gaud2PON_xjR9Cm_77j37zB73pGo4pZxwxWiDMO23JLzD4fWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Pushkin, A V ; Bychkov, A S ; Karabutov, A A ; Potemkin, F V</creator><creatorcontrib>Pushkin, A V ; Bychkov, A S ; Karabutov, A A ; Potemkin, F V</creatorcontrib><description>The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm−3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75-2.0 J cm−2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm−2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.</description><identifier>ISSN: 1612-2011</identifier><identifier>EISSN: 1612-202X</identifier><identifier>DOI: 10.1088/1612-202X/aaba4e</identifier><identifier>CODEN: LPLABC</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>acoustic waves ; bubble dynamics ; cavitation ; photoacoustic ; shock waves ; wideband ultrasonic transducer</subject><ispartof>Laser physics letters, 2018-06, Vol.15 (6), p.65401</ispartof><rights>2018 Astro Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3</citedby><cites>FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pushkin, A V</creatorcontrib><creatorcontrib>Bychkov, A S</creatorcontrib><creatorcontrib>Karabutov, A A</creatorcontrib><creatorcontrib>Potemkin, F V</creatorcontrib><title>Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation</title><title>Laser physics letters</title><addtitle>LPL</addtitle><addtitle>Laser Phys. Lett</addtitle><description>The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm−3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75-2.0 J cm−2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm−2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.</description><subject>acoustic waves</subject><subject>bubble dynamics</subject><subject>cavitation</subject><subject>photoacoustic</subject><subject>shock waves</subject><subject>wideband ultrasonic transducer</subject><issn>1612-2011</issn><issn>1612-202X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgre5dZufGsclkkplZSvFRKAjShbuQp02dTsZkpurfm6GlKxEu93HuuQ8OANcY3WFUVTPMcJ7lKH-bCSFFYU7A5AidHnOMz8FFjBuECKJlPQGfc7Fzveidb6FoNYxrrz7gl9iZCM3WxTg2kvVrA4N7dxpKP7RahB_obeL1JsBUJ791Olu8wla0Phrl065GxIR3QxMNNN_qcOYSnFmRoKtDnILV48Nq_pwtX54W8_tlpgjO-6xUqJK5pEqKmlmFC1taUlpEGZVE1rhkqNaizItcSVbZWjJJNSEGl5QYZskUoP1aFXyMwVjeBbdNf3OM-KgYHyXhozx8r1gaud2PON_xjR9Cm_77j37zB73pGo4pZxwxWiDMO23JLzD4fWk</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Pushkin, A V</creator><creator>Bychkov, A S</creator><creator>Karabutov, A A</creator><creator>Potemkin, F V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation</title><author>Pushkin, A V ; Bychkov, A S ; Karabutov, A A ; Potemkin, F V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acoustic waves</topic><topic>bubble dynamics</topic><topic>cavitation</topic><topic>photoacoustic</topic><topic>shock waves</topic><topic>wideband ultrasonic transducer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushkin, A V</creatorcontrib><creatorcontrib>Bychkov, A S</creatorcontrib><creatorcontrib>Karabutov, A A</creatorcontrib><creatorcontrib>Potemkin, F V</creatorcontrib><collection>CrossRef</collection><jtitle>Laser physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushkin, A V</au><au>Bychkov, A S</au><au>Karabutov, A A</au><au>Potemkin, F V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation</atitle><jtitle>Laser physics letters</jtitle><stitle>LPL</stitle><addtitle>Laser Phys. Lett</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>65401</spage><pages>65401-</pages><issn>1612-2011</issn><eissn>1612-202X</eissn><coden>LPLABC</coden><abstract>The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm−3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75-2.0 J cm−2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm−2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1612-202X/aaba4e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-2011
ispartof Laser physics letters, 2018-06, Vol.15 (6), p.65401
issn 1612-2011
1612-202X
language eng
recordid cdi_crossref_primary_10_1088_1612_202X_aaba4e
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects acoustic waves
bubble dynamics
cavitation
photoacoustic
shock waves
wideband ultrasonic transducer
title Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavitation%20and%20shock%20waves%20emission%20on%20the%20rigid%20boundary%20of%20water%20under%20mid-IR%20nanosecond%20laser%20pulse%20excitation&rft.jtitle=Laser%20physics%20letters&rft.au=Pushkin,%20A%20V&rft.date=2018-06-01&rft.volume=15&rft.issue=6&rft.spage=65401&rft.pages=65401-&rft.issn=1612-2011&rft.eissn=1612-202X&rft.coden=LPLABC&rft_id=info:doi/10.1088/1612-202X/aaba4e&rft_dat=%3Ciop_cross%3Elplaaba4e%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-7c08b2b5cba96fc14f7f37f0565b3b917609da7242cb68f9b6b5d33e1753e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true