Loading…

Real-time and rapid detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance setup

Cost-effective diagnostic platforms for rapid pathogen detection are always incumbent in both developing and developed worlds. However, exorbitant diagnostic expenses and the inability to detect pathogens early are a matter of concern for the sustainability and affordability of healthcare devices, w...

Full description

Saved in:
Bibliographic Details
Published in:Laser physics letters 2018-07, Vol.15 (7), p.75701
Main Authors: Lukose, Jijo, Shetty, Vignesh, Ballal, Mamatha, Chidangil, Santhosh, Sinha, Rajeev K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cost-effective diagnostic platforms for rapid pathogen detection are always incumbent in both developing and developed worlds. However, exorbitant diagnostic expenses and the inability to detect pathogens early are a matter of concern for the sustainability and affordability of healthcare devices, which are crucial for deciding how to provide healthcare solutions to the masses, especially in developing countries. Herein, we present the rapid and real-time detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance (SPR) imaging set up. Pathogen detection is accomplished with the aid of a monoclonal antibody immobilized on a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide): N-hydroxysuccinimide-modified self-assembled monolayer covalently bonded to a Au thin film. Successful pathogen detection is performed at two concentrations, ~1.5  ×  108 and ~1  ×  106 cfu ml−1, in phosphate-buffered saline solution. The developed system is capable of detecting bacterial cells within 6-7 min after their injection into the SPR sensor surface. The present study reveals a cost-effective device having high potential for pathogen detection without any labelling tags.
ISSN:1612-2011
1612-202X
DOI:10.1088/1612-202X/aabed8