Loading…

Rare earth Ce-modified (Ti,Ce)/a-C:H carbon-based film on WC cemented carbide substrate

WC cemented carbide suffers severe wear in water environments. A novel carbon-based film could be a feasible way to overcome this drawback. In this study, a rare earth Ce-modified(Ti,Ce)/a-C:H carbon-based film is successfully prepared on WC cemented carbide using a DC reactive magnetron sputtering...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2017, Vol.26 (1), p.518-524
Main Author: 周升国 刘正兵 王顺才
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:WC cemented carbide suffers severe wear in water environments. A novel carbon-based film could be a feasible way to overcome this drawback. In this study, a rare earth Ce-modified(Ti,Ce)/a-C:H carbon-based film is successfully prepared on WC cemented carbide using a DC reactive magnetron sputtering process. The microstructure, mechanical properties,and tribological behavior of the as-prepared carbon-based film are systematically investigated. The results show that the doping Ti forms Ti C nanocrystallites that are uniformly dispersed in the amorphous carbon matrix, whereas the doping Ce forms CeO2 that exists with the amorphous phase in the co-doped(Ti,Ce)/a-C:H carbon-based film. The mechanical properties of this(Ti,Ce)/a-C:H film exhibit remarkable improvements, which could suggest higher hardness and elastic modulus as well as better adhesive strength compared to solitary Ti-doped Ti/a-C:H film. In particular, the as-prepared(Ti,Ce)/a-C:H film presents a relatively low friction coefficient and wear rate in both ambient air and deionized water,indicating that(Ti,Ce)/a-C:H film could feasibly improve the tribological performance of WC cemented carbide in a water environment.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/1/018101