Loading…

Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides

The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based in- formation processing and also provide an ideal platform to study excitonic effects. At the center of various device physics toward their possible electronic and optoelectronic applicatio...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2017-03, Vol.26 (3), p.148-159
Main Author: 孙栋 赖佳伟 马骏超 王钦生 刘晶
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based in- formation processing and also provide an ideal platform to study excitonic effects. At the center of various device physics toward their possible electronic and optoelectronic applications is understanding the dynamical evolution of various many- particle electronic states, especially exciton which dominates the optoelectronic response of TMDs, under the novel con- text of valley degree of freedom. Here, we provide a brief review of experimental advances in using helicity-resolved ultrafast spectroscopy, especially ultrafast pump-probe spectroscopy, to study the dynamical evolution of valley-related many-particle electronic states in semiconducting monolayer transitional metal dichalcogenides.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/3/037801