Loading…

Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays

A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.T...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2017-04, Vol.26 (4), p.75-86
Main Author: 严浙平 刘一博 周佳加 张伟 王璐
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/4/040203