Loading…

First-principle study of the structural,electronic,and optical properties of SiC nanowires

We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires(NWs). The dielectric functions dominated by electronic interband transitions are investigated in terms of the calculated optical response functions. The calculated results reveal...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2017-05, Vol.26 (5), p.333-338
Main Author: 张威虎 张富春 张伟斌 张绍林 Woochul Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires(NWs). The dielectric functions dominated by electronic interband transitions are investigated in terms of the calculated optical response functions. The calculated results reveal that the SiC NW is an indirect band-gap semiconductor material except at a minimum SiC NW(n = 12) diameter, showing that the NW(n = 12) is metallic. Charge density indicates that the Si–C bond of SiC NW has mixed ionic and covalent characteristics: the covalent character is stronger than the ionic character, and shows strong s–p hybrid orbit characteristics. Moreover, the band gap increases as the SiC NW diameter increases. This shows a significant quantum size and surface effect. The optical properties indicate that the obvious dielectric absorption peaks shift towards the high energy, and that there is a blue shift phenomenon in the ultraviolet region. These results show that SiC NW is a promising optoelectronic material for the potential applications in ultraviolet photoelectron devices.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/5/057103