Loading…
Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity (HC), remanence (MR), and blocking temperature (TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are...
Saved in:
Published in: | Chinese physics B 2018-09, Vol.27 (9), p.97503 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity (HC), remanence (MR), and blocking temperature (TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T < TB and the metropolis Monte-Carlo method for T > TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MR to significantly increase. Our results show that the parameters associated with the particle size distribution (Dd,δ) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/27/9/097503 |