Loading…
Quantum algorithm for neighborhood preserving embedding
Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps, i.e. , finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation...
Saved in:
Published in: | Chinese physics B 2022-06, Vol.31 (6), p.60304-227 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3 |
container_end_page | 227 |
container_issue | 6 |
container_start_page | 60304 |
container_title | Chinese physics B |
container_volume | 31 |
creator | Pan, Shi-Jie Wan, Lin-Chun Liu, Hai-Ling Wu, Yu-Sen Qin, Su-Juan Wen, Qiao-Yan Gao, Fei |
description | Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps,
i.e.
, finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation matrix. Liang
et al
. proposed a variational quantum algorithm (VQA) for NPE [
Phys. Rev. A
101
032323 (2020)]. The algorithm consists of three quantum sub-algorithms, corresponding to the three steps of NPE, and was expected to have an exponential speedup on the dimensionality
n
. However, the algorithm has two disadvantages: (i) It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one. (ii) Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA. In this paper, we propose a complete quantum algorithm for NPE, in which we redesign the three sub-algorithms and give a rigorous complexity analysis. It is shown that our algorithm can achieve a polynomial speedup on the number of data points
m
and an exponential speedup on the dimensionality
n
under certain conditions over the classical NPE algorithm, and achieve a significant speedup compared to Liang
et al
.’s algorithm even without considering the complexity of the VQA. |
doi_str_mv | 10.1088/1674-1056/ac523a |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ac523a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202206025</wanfj_id><sourcerecordid>zgwl_e202206025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhvegYK3ePebmxdid3exHj1L8goIIel72Y5KmNNmySSz6602J6MnTDMPzvgMPIVdAb4FqvQCpihyokAvrBeP2hMx-T2fkvOu2lEqgjM-Ieh1s2w9NZndVTHW_abIypqzFutq4mDYxhmyfsMP0UbdVho3DEMbtgpyWdtfh5c-ck_eH-7fVU75-eXxe3a1zz4H1OZdagy5cIYVGqZYFFAW4UCohHPUITnpeKuf8MvClYCoohqiYBa-4Bwx8Tq6n3oNtS9tWZhuH1I4fzVd12BlklDEqKRMjSSfSp9h1CUuzT3Vj06cBao5azNGBOTowk5YxcjNF6rj_K_4X_wY7I2VE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum algorithm for neighborhood preserving embedding</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Pan, Shi-Jie ; Wan, Lin-Chun ; Liu, Hai-Ling ; Wu, Yu-Sen ; Qin, Su-Juan ; Wen, Qiao-Yan ; Gao, Fei</creator><creatorcontrib>Pan, Shi-Jie ; Wan, Lin-Chun ; Liu, Hai-Ling ; Wu, Yu-Sen ; Qin, Su-Juan ; Wen, Qiao-Yan ; Gao, Fei</creatorcontrib><description>Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps,
i.e.
, finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation matrix. Liang
et al
. proposed a variational quantum algorithm (VQA) for NPE [
Phys. Rev. A
101
032323 (2020)]. The algorithm consists of three quantum sub-algorithms, corresponding to the three steps of NPE, and was expected to have an exponential speedup on the dimensionality
n
. However, the algorithm has two disadvantages: (i) It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one. (ii) Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA. In this paper, we propose a complete quantum algorithm for NPE, in which we redesign the three sub-algorithms and give a rigorous complexity analysis. It is shown that our algorithm can achieve a polynomial speedup on the number of data points
m
and an exponential speedup on the dimensionality
n
under certain conditions over the classical NPE algorithm, and achieve a significant speedup compared to Liang
et al
.’s algorithm even without considering the complexity of the VQA.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/ac523a</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>amplitude amplification ; quantum algorithm ; quantum machine learning</subject><ispartof>Chinese physics B, 2022-06, Vol.31 (6), p.60304-227</ispartof><rights>2022 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3</citedby><cites>FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pan, Shi-Jie</creatorcontrib><creatorcontrib>Wan, Lin-Chun</creatorcontrib><creatorcontrib>Liu, Hai-Ling</creatorcontrib><creatorcontrib>Wu, Yu-Sen</creatorcontrib><creatorcontrib>Qin, Su-Juan</creatorcontrib><creatorcontrib>Wen, Qiao-Yan</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Quantum algorithm for neighborhood preserving embedding</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps,
i.e.
, finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation matrix. Liang
et al
. proposed a variational quantum algorithm (VQA) for NPE [
Phys. Rev. A
101
032323 (2020)]. The algorithm consists of three quantum sub-algorithms, corresponding to the three steps of NPE, and was expected to have an exponential speedup on the dimensionality
n
. However, the algorithm has two disadvantages: (i) It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one. (ii) Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA. In this paper, we propose a complete quantum algorithm for NPE, in which we redesign the three sub-algorithms and give a rigorous complexity analysis. It is shown that our algorithm can achieve a polynomial speedup on the number of data points
m
and an exponential speedup on the dimensionality
n
under certain conditions over the classical NPE algorithm, and achieve a significant speedup compared to Liang
et al
.’s algorithm even without considering the complexity of the VQA.</description><subject>amplitude amplification</subject><subject>quantum algorithm</subject><subject>quantum machine learning</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhvegYK3ePebmxdid3exHj1L8goIIel72Y5KmNNmySSz6602J6MnTDMPzvgMPIVdAb4FqvQCpihyokAvrBeP2hMx-T2fkvOu2lEqgjM-Ieh1s2w9NZndVTHW_abIypqzFutq4mDYxhmyfsMP0UbdVho3DEMbtgpyWdtfh5c-ck_eH-7fVU75-eXxe3a1zz4H1OZdagy5cIYVGqZYFFAW4UCohHPUITnpeKuf8MvClYCoohqiYBa-4Bwx8Tq6n3oNtS9tWZhuH1I4fzVd12BlklDEqKRMjSSfSp9h1CUuzT3Vj06cBao5azNGBOTowk5YxcjNF6rj_K_4X_wY7I2VE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Pan, Shi-Jie</creator><creator>Wan, Lin-Chun</creator><creator>Liu, Hai-Ling</creator><creator>Wu, Yu-Sen</creator><creator>Qin, Su-Juan</creator><creator>Wen, Qiao-Yan</creator><creator>Gao, Fei</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>State Key Laboratory of Cryptology,P.O.Box 5159,Beijing 100878,China%State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China</general><general>State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220601</creationdate><title>Quantum algorithm for neighborhood preserving embedding</title><author>Pan, Shi-Jie ; Wan, Lin-Chun ; Liu, Hai-Ling ; Wu, Yu-Sen ; Qin, Su-Juan ; Wen, Qiao-Yan ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>amplitude amplification</topic><topic>quantum algorithm</topic><topic>quantum machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shi-Jie</creatorcontrib><creatorcontrib>Wan, Lin-Chun</creatorcontrib><creatorcontrib>Liu, Hai-Ling</creatorcontrib><creatorcontrib>Wu, Yu-Sen</creatorcontrib><creatorcontrib>Qin, Su-Juan</creatorcontrib><creatorcontrib>Wen, Qiao-Yan</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Shi-Jie</au><au>Wan, Lin-Chun</au><au>Liu, Hai-Ling</au><au>Wu, Yu-Sen</au><au>Qin, Su-Juan</au><au>Wen, Qiao-Yan</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum algorithm for neighborhood preserving embedding</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>31</volume><issue>6</issue><spage>60304</spage><epage>227</epage><pages>60304-227</pages><issn>1674-1056</issn><abstract>Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps,
i.e.
, finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation matrix. Liang
et al
. proposed a variational quantum algorithm (VQA) for NPE [
Phys. Rev. A
101
032323 (2020)]. The algorithm consists of three quantum sub-algorithms, corresponding to the three steps of NPE, and was expected to have an exponential speedup on the dimensionality
n
. However, the algorithm has two disadvantages: (i) It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one. (ii) Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA. In this paper, we propose a complete quantum algorithm for NPE, in which we redesign the three sub-algorithms and give a rigorous complexity analysis. It is shown that our algorithm can achieve a polynomial speedup on the number of data points
m
and an exponential speedup on the dimensionality
n
under certain conditions over the classical NPE algorithm, and achieve a significant speedup compared to Liang
et al
.’s algorithm even without considering the complexity of the VQA.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ac523a</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2022-06, Vol.31 (6), p.60304-227 |
issn | 1674-1056 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1674_1056_ac523a |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | amplitude amplification quantum algorithm quantum machine learning |
title | Quantum algorithm for neighborhood preserving embedding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20algorithm%20for%20neighborhood%20preserving%20embedding&rft.jtitle=Chinese%20physics%20B&rft.au=Pan,%20Shi-Jie&rft.date=2022-06-01&rft.volume=31&rft.issue=6&rft.spage=60304&rft.epage=227&rft.pages=60304-227&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/ac523a&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202206025%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-3688184b4658e67941441bdf755b0ce1b6c3f7bbc9d39527d72ee72a1c73c1ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202206025&rfr_iscdi=true |