Loading…
Equal-time kinetic equations in a rotational field
We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass she...
Saved in:
Published in: | Chinese physics C 2022-02, Vol.46 (2), p.24108 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 24108 |
container_title | Chinese physics C |
container_volume | 46 |
creator | Chen, Shile Wang, Ziyue Zhuang, Pengfei |
description | We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density. |
doi_str_mv | 10.1088/1674-1137/ac39fd |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1137_ac39fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1674_1137_ac39fd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMoWFfvHvMH4r75bHqUZf2ABS96Dvl4A9Fuq009-O_durKnYWaYgYeQWw53HKxdc9Mqxrls1z7KLqcz0gjQlhkuxTlpTvUluar1HcCow6ohYvv17Xs2lz3SjzLgXCLFQzSXcai0DNTTaZz_rO9pLtina3KRfV_x5l9X5O1h-7p5YruXx-fN_Y5FYfXMLLco0YQupYA6x4AttilCMBggcROSNqCSsJCChoyRJ6WE1tjpAKoLckXg-BunsdYJs_ucyt5PP46DW5jdAuUWKHdklr_cr0td</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equal-time kinetic equations in a rotational field</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</creator><creatorcontrib>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</creatorcontrib><description>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</description><identifier>ISSN: 1674-1137</identifier><identifier>EISSN: 2058-6132</identifier><identifier>DOI: 10.1088/1674-1137/ac39fd</identifier><language>eng</language><ispartof>Chinese physics C, 2022-02, Vol.46 (2), p.24108</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</citedby><cites>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Shile</creatorcontrib><creatorcontrib>Wang, Ziyue</creatorcontrib><creatorcontrib>Zhuang, Pengfei</creatorcontrib><title>Equal-time kinetic equations in a rotational field</title><title>Chinese physics C</title><description>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</description><issn>1674-1137</issn><issn>2058-6132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMoWFfvHvMH4r75bHqUZf2ABS96Dvl4A9Fuq009-O_durKnYWaYgYeQWw53HKxdc9Mqxrls1z7KLqcz0gjQlhkuxTlpTvUluar1HcCow6ohYvv17Xs2lz3SjzLgXCLFQzSXcai0DNTTaZz_rO9pLtina3KRfV_x5l9X5O1h-7p5YruXx-fN_Y5FYfXMLLco0YQupYA6x4AttilCMBggcROSNqCSsJCChoyRJ6WE1tjpAKoLckXg-BunsdYJs_ucyt5PP46DW5jdAuUWKHdklr_cr0td</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Shile</creator><creator>Wang, Ziyue</creator><creator>Zhuang, Pengfei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Equal-time kinetic equations in a rotational field</title><author>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shile</creatorcontrib><creatorcontrib>Wang, Ziyue</creatorcontrib><creatorcontrib>Zhuang, Pengfei</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese physics C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shile</au><au>Wang, Ziyue</au><au>Zhuang, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equal-time kinetic equations in a rotational field</atitle><jtitle>Chinese physics C</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>46</volume><issue>2</issue><spage>24108</spage><pages>24108-</pages><issn>1674-1137</issn><eissn>2058-6132</eissn><abstract>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</abstract><doi>10.1088/1674-1137/ac39fd</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1137 |
ispartof | Chinese physics C, 2022-02, Vol.46 (2), p.24108 |
issn | 1674-1137 2058-6132 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1674_1137_ac39fd |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | Equal-time kinetic equations in a rotational field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equal-time%20kinetic%20equations%20in%20a%20rotational%20field&rft.jtitle=Chinese%20physics%20C&rft.au=Chen,%20Shile&rft.date=2022-02-01&rft.volume=46&rft.issue=2&rft.spage=24108&rft.pages=24108-&rft.issn=1674-1137&rft.eissn=2058-6132&rft_id=info:doi/10.1088/1674-1137/ac39fd&rft_dat=%3Ccrossref%3E10_1088_1674_1137_ac39fd%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |