Loading…

Equal-time kinetic equations in a rotational field

We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass she...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics C 2022-02, Vol.46 (2), p.24108
Main Authors: Chen, Shile, Wang, Ziyue, Zhuang, Pengfei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3
cites cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3
container_end_page
container_issue 2
container_start_page 24108
container_title Chinese physics C
container_volume 46
creator Chen, Shile
Wang, Ziyue
Zhuang, Pengfei
description We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.
doi_str_mv 10.1088/1674-1137/ac39fd
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1137_ac39fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1674_1137_ac39fd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMoWFfvHvMH4r75bHqUZf2ABS96Dvl4A9Fuq009-O_durKnYWaYgYeQWw53HKxdc9Mqxrls1z7KLqcz0gjQlhkuxTlpTvUluar1HcCow6ohYvv17Xs2lz3SjzLgXCLFQzSXcai0DNTTaZz_rO9pLtina3KRfV_x5l9X5O1h-7p5YruXx-fN_Y5FYfXMLLco0YQupYA6x4AttilCMBggcROSNqCSsJCChoyRJ6WE1tjpAKoLckXg-BunsdYJs_ucyt5PP46DW5jdAuUWKHdklr_cr0td</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equal-time kinetic equations in a rotational field</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</creator><creatorcontrib>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</creatorcontrib><description>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</description><identifier>ISSN: 1674-1137</identifier><identifier>EISSN: 2058-6132</identifier><identifier>DOI: 10.1088/1674-1137/ac39fd</identifier><language>eng</language><ispartof>Chinese physics C, 2022-02, Vol.46 (2), p.24108</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</citedby><cites>FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Shile</creatorcontrib><creatorcontrib>Wang, Ziyue</creatorcontrib><creatorcontrib>Zhuang, Pengfei</creatorcontrib><title>Equal-time kinetic equations in a rotational field</title><title>Chinese physics C</title><description>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</description><issn>1674-1137</issn><issn>2058-6132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMoWFfvHvMH4r75bHqUZf2ABS96Dvl4A9Fuq009-O_durKnYWaYgYeQWw53HKxdc9Mqxrls1z7KLqcz0gjQlhkuxTlpTvUluar1HcCow6ohYvv17Xs2lz3SjzLgXCLFQzSXcai0DNTTaZz_rO9pLtina3KRfV_x5l9X5O1h-7p5YruXx-fN_Y5FYfXMLLco0YQupYA6x4AttilCMBggcROSNqCSsJCChoyRJ6WE1tjpAKoLckXg-BunsdYJs_ucyt5PP46DW5jdAuUWKHdklr_cr0td</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Shile</creator><creator>Wang, Ziyue</creator><creator>Zhuang, Pengfei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Equal-time kinetic equations in a rotational field</title><author>Chen, Shile ; Wang, Ziyue ; Zhuang, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shile</creatorcontrib><creatorcontrib>Wang, Ziyue</creatorcontrib><creatorcontrib>Zhuang, Pengfei</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese physics C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shile</au><au>Wang, Ziyue</au><au>Zhuang, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equal-time kinetic equations in a rotational field</atitle><jtitle>Chinese physics C</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>46</volume><issue>2</issue><spage>24108</spage><pages>24108-</pages><issn>1674-1137</issn><eissn>2058-6132</eissn><abstract>We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.</abstract><doi>10.1088/1674-1137/ac39fd</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-1137
ispartof Chinese physics C, 2022-02, Vol.46 (2), p.24108
issn 1674-1137
2058-6132
language eng
recordid cdi_crossref_primary_10_1088_1674_1137_ac39fd
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Equal-time kinetic equations in a rotational field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equal-time%20kinetic%20equations%20in%20a%20rotational%20field&rft.jtitle=Chinese%20physics%20C&rft.au=Chen,%20Shile&rft.date=2022-02-01&rft.volume=46&rft.issue=2&rft.spage=24108&rft.pages=24108-&rft.issn=1674-1137&rft.eissn=2058-6132&rft_id=info:doi/10.1088/1674-1137/ac39fd&rft_dat=%3Ccrossref%3E10_1088_1674_1137_ac39fd%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-818e3e6b9ddbe5fcbe7e7dc0b6eb0d16bd5604d280db50fec1d44255e95b049b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true