Loading…
Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions
In this paper, by exploring photon motion in the region near a Bardeen black hole, we studied the shadow and observed properties of the black hole surrounded by various accretion models. We analyzed the changes in shadow imaging and observed luminosity when the relevant physical parameters are chang...
Saved in:
Published in: | Chinese physics C 2022-08, Vol.46 (8), p.85106 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, by exploring photon motion in the region near a Bardeen black hole, we studied the shadow and observed properties of the black hole surrounded by various accretion models. We analyzed the changes in shadow imaging and observed luminosity when the relevant physical parameters are changed. For the different spherical accretion backgrounds, we find that the radius of shadow and the position of the photon sphere do not change, but the observed intensity of shadow in the infalling accretion model is significantly lower than that in the static case. We also studied the contribution of the photon rings, lensing rings and direct emission to the total observed flux when the black hole is surrounded by an optically thin disk accretion. Under the different forms of the emission modes, the results show that the observed brightness is mainly determined by direct emission, while the lensing rings will provide a small part of the observed flux, and the flux provided by the photon ring is negligible. By comparing our results with the Schwarzschild spacetime, we find that the existence or change of relevant status parameters will greatly affect the shape and observed intensity of the black hole shadow. These results support the theory that the change of state parameter will affect the spacetime structure, thus affecting the observed features of black hole shadows. |
---|---|
ISSN: | 1674-1137 2058-6132 |
DOI: | 10.1088/1674-1137/ac67fe |