Loading…
Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)
A neural network with two hidden layers is developed for nuclear mass prediction, based on the finite-range droplet model (FRDM12). Different hyperparameters, including the number of hidden units, choice of activation functions, initializers, and learning rates, are adjusted explicitly and systemati...
Saved in:
Published in: | Chinese physics C 2024-02, Vol.48 (2), p.24102 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3 |
container_end_page | |
container_issue | 2 |
container_start_page | 24102 |
container_title | Chinese physics C |
container_volume | 48 |
creator | Yiu 姚, To Chung 道驄 Liang 梁, Haozhao 豪兆 Lee 李, Jenny 曉菁 |
description | A neural network with two hidden layers is developed for nuclear mass prediction, based on the finite-range droplet model (FRDM12). Different hyperparameters, including the number of hidden units, choice of activation functions, initializers, and learning rates, are adjusted explicitly and systematically. The resulting mass predictions are achieved by averaging the predictions given by several different sets of hyperparameters with different regularizers and seed numbers. This can provide not only the average values of mass predictions but also reliable estimations in the mass prediction uncertainties. The overall root-mean-square deviations of nuclear mass are reduced from 0.603 MeV for the FRDM12 model to 0.200 MeV and 0.232 MeV for the training and validation sets, respectively. |
doi_str_mv | 10.1088/1674-1137/ad021c |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1137_ad021c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1674_1137_ad021c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWEf3LrPURZ33kqZNlzLoKAy60aWUZ_Iq1X6RdBD_vS0jru7ici-cI8Qlwg2CtWvMiyxF1MWaPCh0RyJRYGyao1bHIvmvT8VZjJ8AeTavEvH2tHctU5AdxSjHwL5xUzP0Ub5TZC-HXpL0zKPseR-onWP6HsKXpN7LuumbidNA_QdLH4ax5Ul2g-dWXilAdX0uTmpqI1_85Uq83t-9bB7S3fP2cXO7S52yZkp1rjXUtjaoLftcIRa6QCBHdWm8Ba8NeldmM4uxJaJ11gNmig1YopL0SsDh14UhxsB1NYamo_BTIVSLnmrhrxb-6qBH_wIlH1c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yiu 姚, To Chung 道驄 ; Liang 梁, Haozhao 豪兆 ; Lee 李, Jenny 曉菁</creator><creatorcontrib>Yiu 姚, To Chung 道驄 ; Liang 梁, Haozhao 豪兆 ; Lee 李, Jenny 曉菁</creatorcontrib><description>A neural network with two hidden layers is developed for nuclear mass prediction, based on the finite-range droplet model (FRDM12). Different hyperparameters, including the number of hidden units, choice of activation functions, initializers, and learning rates, are adjusted explicitly and systematically. The resulting mass predictions are achieved by averaging the predictions given by several different sets of hyperparameters with different regularizers and seed numbers. This can provide not only the average values of mass predictions but also reliable estimations in the mass prediction uncertainties. The overall root-mean-square deviations of nuclear mass are reduced from 0.603 MeV for the FRDM12 model to 0.200 MeV and 0.232 MeV for the training and validation sets, respectively.</description><identifier>ISSN: 1674-1137</identifier><identifier>EISSN: 2058-6132</identifier><identifier>DOI: 10.1088/1674-1137/ad021c</identifier><language>eng</language><ispartof>Chinese physics C, 2024-02, Vol.48 (2), p.24102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3</citedby><cites>FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yiu 姚, To Chung 道驄</creatorcontrib><creatorcontrib>Liang 梁, Haozhao 豪兆</creatorcontrib><creatorcontrib>Lee 李, Jenny 曉菁</creatorcontrib><title>Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)</title><title>Chinese physics C</title><description>A neural network with two hidden layers is developed for nuclear mass prediction, based on the finite-range droplet model (FRDM12). Different hyperparameters, including the number of hidden units, choice of activation functions, initializers, and learning rates, are adjusted explicitly and systematically. The resulting mass predictions are achieved by averaging the predictions given by several different sets of hyperparameters with different regularizers and seed numbers. This can provide not only the average values of mass predictions but also reliable estimations in the mass prediction uncertainties. The overall root-mean-square deviations of nuclear mass are reduced from 0.603 MeV for the FRDM12 model to 0.200 MeV and 0.232 MeV for the training and validation sets, respectively.</description><issn>1674-1137</issn><issn>2058-6132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoWEf3LrPURZ33kqZNlzLoKAy60aWUZ_Iq1X6RdBD_vS0jru7ici-cI8Qlwg2CtWvMiyxF1MWaPCh0RyJRYGyao1bHIvmvT8VZjJ8AeTavEvH2tHctU5AdxSjHwL5xUzP0Ub5TZC-HXpL0zKPseR-onWP6HsKXpN7LuumbidNA_QdLH4ax5Ul2g-dWXilAdX0uTmpqI1_85Uq83t-9bB7S3fP2cXO7S52yZkp1rjXUtjaoLftcIRa6QCBHdWm8Ba8NeldmM4uxJaJ11gNmig1YopL0SsDh14UhxsB1NYamo_BTIVSLnmrhrxb-6qBH_wIlH1c1</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yiu 姚, To Chung 道驄</creator><creator>Liang 梁, Haozhao 豪兆</creator><creator>Lee 李, Jenny 曉菁</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)</title><author>Yiu 姚, To Chung 道驄 ; Liang 梁, Haozhao 豪兆 ; Lee 李, Jenny 曉菁</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiu 姚, To Chung 道驄</creatorcontrib><creatorcontrib>Liang 梁, Haozhao 豪兆</creatorcontrib><creatorcontrib>Lee 李, Jenny 曉菁</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese physics C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiu 姚, To Chung 道驄</au><au>Liang 梁, Haozhao 豪兆</au><au>Lee 李, Jenny 曉菁</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)</atitle><jtitle>Chinese physics C</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>48</volume><issue>2</issue><spage>24102</spage><pages>24102-</pages><issn>1674-1137</issn><eissn>2058-6132</eissn><abstract>A neural network with two hidden layers is developed for nuclear mass prediction, based on the finite-range droplet model (FRDM12). Different hyperparameters, including the number of hidden units, choice of activation functions, initializers, and learning rates, are adjusted explicitly and systematically. The resulting mass predictions are achieved by averaging the predictions given by several different sets of hyperparameters with different regularizers and seed numbers. This can provide not only the average values of mass predictions but also reliable estimations in the mass prediction uncertainties. The overall root-mean-square deviations of nuclear mass are reduced from 0.603 MeV for the FRDM12 model to 0.200 MeV and 0.232 MeV for the training and validation sets, respectively.</abstract><doi>10.1088/1674-1137/ad021c</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1137 |
ispartof | Chinese physics C, 2024-02, Vol.48 (2), p.24102 |
issn | 1674-1137 2058-6132 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1674_1137_ad021c |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20mass%20predictions%20based%20on%20a%20deep%20neural%20network%20and%20finite-range%20droplet%20model%20(2012)&rft.jtitle=Chinese%20physics%20C&rft.au=Yiu%20%E5%A7%9A,%20To%20Chung%20%E9%81%93%E9%A9%84&rft.date=2024-02-01&rft.volume=48&rft.issue=2&rft.spage=24102&rft.pages=24102-&rft.issn=1674-1137&rft.eissn=2058-6132&rft_id=info:doi/10.1088/1674-1137/ad021c&rft_dat=%3Ccrossref%3E10_1088_1674_1137_ad021c%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-36330f8f5138ed621173710acaf95d80d351dc94613589118c8d0142e508aa9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |