Loading…

A new segmentation algorithm for lunar surface terrain based on CCD images

Terrain classification is one of the critical steps used in lunar geomorphologic analysis and landing site selection. Most of the published works have focused on a Digital Elevation Model (DEM) to distinguish different regions of lunar terrain. This paper presents an algorithm that can be applied to...

Full description

Saved in:
Bibliographic Details
Published in:Research in astronomy and astrophysics 2015-09, Vol.15 (9), p.1604-1612
Main Authors: Jiang, Hong-Kun, Tian, Xiao-Lin, Xu, Ao-Ao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrain classification is one of the critical steps used in lunar geomorphologic analysis and landing site selection. Most of the published works have focused on a Digital Elevation Model (DEM) to distinguish different regions of lunar terrain. This paper presents an algorithm that can be applied to lunar CCD images by blocking and clustering according to image features, which can accurately distinguish between lunar highland and lunar mare. The new algorithm, compared with the traditional algo- rithm, can improve classification accuracy. The new algorithm incorporates two new features and one Tamura texture feature. The new features are generating an enhanced image histogram and modeling the properties of light reflection, which can represent the geological characteristics based on CCD gray level images. These features are ap- plied to identify texture in order to perform image clustering and segmentation by a weighted Euclidean distance to distinguish between lunar mare and lunar highlands. The new algorithm has been tested on Chang'e-1 CCD data and the testing result has been compared with geological data published by the U.S. Geological Survey. The result has shown that the algorithm can effectively distinguish the lunar mare from highlands in CCD images. The overall accuracy of the proposed algorithm is satisfactory, and the Kappa coefficient is 0.802, which is higher than the result of combining the DEM with CCD images.
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/15/9/016