Loading…

Can the temperature of Ellerman Bombs be more than 10 000 K

Ellerman bombs (EBs) are small brightening events in the solar lower atmosphere. By their original definition, the main characteristic of EBs is the two emission bumps in both wings of chro- mospheric lines, such as Hα and Ca II 8542A lines. Up to now, most authors have found that the temperature in...

Full description

Saved in:
Bibliographic Details
Published in:Research in astronomy and astrophysics 2017-03, Vol.17 (4), p.1-6
Main Authors: Fang, Cheng, Hao, Qi, Ding, Ming-De, Li, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ellerman bombs (EBs) are small brightening events in the solar lower atmosphere. By their original definition, the main characteristic of EBs is the two emission bumps in both wings of chro- mospheric lines, such as Hα and Ca II 8542A lines. Up to now, most authors have found that the temperature increase of EBs around the temperature minimum region is in the range of 600-3000 K. However, with recent IRIS observations, some authors proposed that the temperature increase of EBs could be more than 10 000 K. Using non-LTE semi-empirical modeling, we investigate the line profiles, continuum emission and radiative losses for EB models with different temperature increases, and com- pare them with observations. Our result indicates that if the EB maximum temperature reaches more than 10000K around the temperature minimum region, then the resulting Hα and Call 8542A line profiles and the continuum emission would be much stronger than those of EB observations. Moreover, due to the high radiative losses, a high temperature EB compatible with observations. Thus, our study does not higher than 10 000 K. would have a very short lifetime, which is not support the proposal that EB temperatures are higher than 10 000 K.
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/17/4/31