Loading…
Stress-induced hydrogen self-trapping in tungsten
The molecular dynamics simulations of trapping of hydrogen atoms in tungsten are presented. The simulations reveal formation of platelet-like structures of self-trapped hydrogen induced by stresses in tungsten, in particular, those produced by dislocations, at the interstitial hydrogen concentration...
Saved in:
Published in: | Nuclear fusion 2018-10, Vol.58 (12), p.126016 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The molecular dynamics simulations of trapping of hydrogen atoms in tungsten are presented. The simulations reveal formation of platelet-like structures of self-trapped hydrogen induced by stresses in tungsten, in particular, those produced by dislocations, at the interstitial hydrogen concentrations at.%. The spontaneous hydrogen platelet formation in absence of dislocations and external stresses has been also observed at the higher hydrogen concentrations at.%. It is shown that the platelets can retain substantial quantities of hydrogen, exceeding trapping capacity of other non-cavity defects in tungsten. The properties of the hydrogen platelets formed in tungsten under various conditions are assessed and a formation mechanism is proposed. A model of hydrogen retention by the dislocation-induced structures is also presented, which describes retained quantities and outgassing dynamics of hydrogen in plasma exposed tungsten samples. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/1741-4326/aae2c7 |