Loading…

Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks

A numerical database of over one thousand perturbed three-dimensional (3D) equilibria has been generated, constructed based on the MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) computed plasma response to the externally applied 3D field sources in multiple tokamak devices. Perturbed 3D equilibria wit...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2022-12, Vol.62 (12), p.126067
Main Authors: Liu, Yueqiang, Akcay, Cihan, Lao, Lang L., Sun, Xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13
cites cdi_FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13
container_end_page
container_issue 12
container_start_page 126067
container_title Nuclear fusion
container_volume 62
creator Liu, Yueqiang
Akcay, Cihan
Lao, Lang L.
Sun, Xuan
description A numerical database of over one thousand perturbed three-dimensional (3D) equilibria has been generated, constructed based on the MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) computed plasma response to the externally applied 3D field sources in multiple tokamak devices. Perturbed 3D equilibria with the n = 1–4 ( n is the toroidal mode number) toroidal periodicity are computed. Surrogate models are created for the computed perturbed 3D equilibrium utilizing model order reduction (MOR) techniques. In particular, retaining the first few eigenstates from the singular value decomposition (SVD) of the data is found to produce reasonably accurate MOR-representations for the key perturbed quantities, such as the perturbed parallel plasma current density and the plasma radial displacement. SVD also helps to reveal the core versus edge plasma response to the applied 3D field. For the database covering the conventional aspect ratio devices, about 95% of data can be represented by the truncated SVD-series with inclusion of only the first five eigenstates, achieving a relative error (RE) below 20%. The MOR-data is further utilized to train neural networks (NNs) to enable fast reconstruction of perturbed 3D equilibria, based on the two-dimensional equilibrium input and the 3D source field. The best NN-training is achieved for the MOR-data obtained with a global SVD approach, where the full set of samples used for NN training and testing are stretched and form a large matrix which is then subject to SVD. The fully connected multi-layer perceptron, with one or two hidden layers, can be trained to predict the MOR-data with less than 10% RE. As a key insight, a better strategy is to train separate NNs for the plasma response fields with different toroidal mode numbers. It is also better to apply MOR and to subsequently train NNs separately for conventional and low aspect ratio devices, due to enhanced toroidal coupling of Fourier spectra in the plasma response in the latter case.
doi_str_mv 10.1088/1741-4326/ac9d4c
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ac9d4c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfac9d4c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13</originalsourceid><addsrcrecordid>eNp1kElPwzAQRi0EEmW5c7Q4E-qJncVHVFapEgd6txwvrdskDrZz6L8nURE3TvNp9L6R5iF0B-QRSF0voWKQMZqXS6m4ZuoMLf5W52hBSM6zooDiEl3FuCcEGFC6QP5rDMFvZTK489q0EVsf8NDK2EmsXZySMp3pE5a9xmqC5-x6TJ_xYEIaQ2M07uS2N8nvjjp4fexl5xQ236NrXROcnPHkD7KTh3iDLqxso7n9nddo8_qyWb1n68-3j9XTOlOU8ZTVAOWUaKkqC1VtSiOptWUhgfBcc9oAoyzXta4qzgmpeVExbqHMS2gaC_Qa3Z_O-piciMolo3bK971RSUDNayhmiJwgFXyMwVgxBNfJcBRAxCxVzAbFbFCcpE6Vh1PF-UHs_Rj66Yn_8R9R4nnS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Liu, Yueqiang ; Akcay, Cihan ; Lao, Lang L. ; Sun, Xuan</creator><creatorcontrib>Liu, Yueqiang ; Akcay, Cihan ; Lao, Lang L. ; Sun, Xuan ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>A numerical database of over one thousand perturbed three-dimensional (3D) equilibria has been generated, constructed based on the MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) computed plasma response to the externally applied 3D field sources in multiple tokamak devices. Perturbed 3D equilibria with the n = 1–4 ( n is the toroidal mode number) toroidal periodicity are computed. Surrogate models are created for the computed perturbed 3D equilibrium utilizing model order reduction (MOR) techniques. In particular, retaining the first few eigenstates from the singular value decomposition (SVD) of the data is found to produce reasonably accurate MOR-representations for the key perturbed quantities, such as the perturbed parallel plasma current density and the plasma radial displacement. SVD also helps to reveal the core versus edge plasma response to the applied 3D field. For the database covering the conventional aspect ratio devices, about 95% of data can be represented by the truncated SVD-series with inclusion of only the first five eigenstates, achieving a relative error (RE) below 20%. The MOR-data is further utilized to train neural networks (NNs) to enable fast reconstruction of perturbed 3D equilibria, based on the two-dimensional equilibrium input and the 3D source field. The best NN-training is achieved for the MOR-data obtained with a global SVD approach, where the full set of samples used for NN training and testing are stretched and form a large matrix which is then subject to SVD. The fully connected multi-layer perceptron, with one or two hidden layers, can be trained to predict the MOR-data with less than 10% RE. As a key insight, a better strategy is to train separate NNs for the plasma response fields with different toroidal mode numbers. It is also better to apply MOR and to subsequently train NNs separately for conventional and low aspect ratio devices, due to enhanced toroidal coupling of Fourier spectra in the plasma response in the latter case.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ac9d4c</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>3D equilibrium ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; MOR ; Physics ; plasma response</subject><ispartof>Nuclear fusion, 2022-12, Vol.62 (12), p.126067</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13</citedby><cites>FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13</cites><orcidid>0000-0002-8192-8411 ; 0000-0003-1937-2675 ; 0000000319372675 ; 0000000281928411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1898151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yueqiang</creatorcontrib><creatorcontrib>Akcay, Cihan</creatorcontrib><creatorcontrib>Lao, Lang L.</creatorcontrib><creatorcontrib>Sun, Xuan</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>A numerical database of over one thousand perturbed three-dimensional (3D) equilibria has been generated, constructed based on the MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) computed plasma response to the externally applied 3D field sources in multiple tokamak devices. Perturbed 3D equilibria with the n = 1–4 ( n is the toroidal mode number) toroidal periodicity are computed. Surrogate models are created for the computed perturbed 3D equilibrium utilizing model order reduction (MOR) techniques. In particular, retaining the first few eigenstates from the singular value decomposition (SVD) of the data is found to produce reasonably accurate MOR-representations for the key perturbed quantities, such as the perturbed parallel plasma current density and the plasma radial displacement. SVD also helps to reveal the core versus edge plasma response to the applied 3D field. For the database covering the conventional aspect ratio devices, about 95% of data can be represented by the truncated SVD-series with inclusion of only the first five eigenstates, achieving a relative error (RE) below 20%. The MOR-data is further utilized to train neural networks (NNs) to enable fast reconstruction of perturbed 3D equilibria, based on the two-dimensional equilibrium input and the 3D source field. The best NN-training is achieved for the MOR-data obtained with a global SVD approach, where the full set of samples used for NN training and testing are stretched and form a large matrix which is then subject to SVD. The fully connected multi-layer perceptron, with one or two hidden layers, can be trained to predict the MOR-data with less than 10% RE. As a key insight, a better strategy is to train separate NNs for the plasma response fields with different toroidal mode numbers. It is also better to apply MOR and to subsequently train NNs separately for conventional and low aspect ratio devices, due to enhanced toroidal coupling of Fourier spectra in the plasma response in the latter case.</description><subject>3D equilibrium</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>MOR</subject><subject>Physics</subject><subject>plasma response</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQRi0EEmW5c7Q4E-qJncVHVFapEgd6txwvrdskDrZz6L8nURE3TvNp9L6R5iF0B-QRSF0voWKQMZqXS6m4ZuoMLf5W52hBSM6zooDiEl3FuCcEGFC6QP5rDMFvZTK489q0EVsf8NDK2EmsXZySMp3pE5a9xmqC5-x6TJ_xYEIaQ2M07uS2N8nvjjp4fexl5xQ236NrXROcnPHkD7KTh3iDLqxso7n9nddo8_qyWb1n68-3j9XTOlOU8ZTVAOWUaKkqC1VtSiOptWUhgfBcc9oAoyzXta4qzgmpeVExbqHMS2gaC_Qa3Z_O-piciMolo3bK971RSUDNayhmiJwgFXyMwVgxBNfJcBRAxCxVzAbFbFCcpE6Vh1PF-UHs_Rj66Yn_8R9R4nnS</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Liu, Yueqiang</creator><creator>Akcay, Cihan</creator><creator>Lao, Lang L.</creator><creator>Sun, Xuan</creator><general>IOP Publishing</general><general>IOP Science</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8192-8411</orcidid><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000281928411</orcidid></search><sort><creationdate>20221201</creationdate><title>Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks</title><author>Liu, Yueqiang ; Akcay, Cihan ; Lao, Lang L. ; Sun, Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D equilibrium</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>MOR</topic><topic>Physics</topic><topic>plasma response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yueqiang</creatorcontrib><creatorcontrib>Akcay, Cihan</creatorcontrib><creatorcontrib>Lao, Lang L.</creatorcontrib><creatorcontrib>Sun, Xuan</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yueqiang</au><au>Akcay, Cihan</au><au>Lao, Lang L.</au><au>Sun, Xuan</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>62</volume><issue>12</issue><spage>126067</spage><pages>126067-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>A numerical database of over one thousand perturbed three-dimensional (3D) equilibria has been generated, constructed based on the MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) computed plasma response to the externally applied 3D field sources in multiple tokamak devices. Perturbed 3D equilibria with the n = 1–4 ( n is the toroidal mode number) toroidal periodicity are computed. Surrogate models are created for the computed perturbed 3D equilibrium utilizing model order reduction (MOR) techniques. In particular, retaining the first few eigenstates from the singular value decomposition (SVD) of the data is found to produce reasonably accurate MOR-representations for the key perturbed quantities, such as the perturbed parallel plasma current density and the plasma radial displacement. SVD also helps to reveal the core versus edge plasma response to the applied 3D field. For the database covering the conventional aspect ratio devices, about 95% of data can be represented by the truncated SVD-series with inclusion of only the first five eigenstates, achieving a relative error (RE) below 20%. The MOR-data is further utilized to train neural networks (NNs) to enable fast reconstruction of perturbed 3D equilibria, based on the two-dimensional equilibrium input and the 3D source field. The best NN-training is achieved for the MOR-data obtained with a global SVD approach, where the full set of samples used for NN training and testing are stretched and form a large matrix which is then subject to SVD. The fully connected multi-layer perceptron, with one or two hidden layers, can be trained to predict the MOR-data with less than 10% RE. As a key insight, a better strategy is to train separate NNs for the plasma response fields with different toroidal mode numbers. It is also better to apply MOR and to subsequently train NNs separately for conventional and low aspect ratio devices, due to enhanced toroidal coupling of Fourier spectra in the plasma response in the latter case.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ac9d4c</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8192-8411</orcidid><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000281928411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2022-12, Vol.62 (12), p.126067
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_ac9d4c
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 3D equilibrium
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
MOR
Physics
plasma response
title Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surrogate%20models%20for%20plasma%20displacement%20and%20current%20in%203D%20perturbed%20magnetohydrodynamic%20equilibria%20in%20tokamaks&rft.jtitle=Nuclear%20fusion&rft.au=Liu,%20Yueqiang&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2022-12-01&rft.volume=62&rft.issue=12&rft.spage=126067&rft.pages=126067-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ac9d4c&rft_dat=%3Ciop_cross%3Enfac9d4c%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-8116c3436c7f178e6ea3ff65a1092d93b14342d8d779900895749f16261bbf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true