Loading…
In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection
Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diamet...
Saved in:
Published in: | Nuclear fusion 2023-10, Vol.63 (10), p.106004 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3 |
container_end_page | |
container_issue | 10 |
container_start_page | 106004 |
container_title | Nuclear fusion |
container_volume | 63 |
creator | Effenberg, F. Abe, S. Sinclair, G. Abrams, T. Bortolon, A. Wampler, W.R. Laggner, F.M. Rudakov, D.L. Bykov, I. Lasnier, C.J. Mauzey, D. Nagy, A. Nazikian, R. Scotti, F. Wang, H.Q. Wilcox, R.S. |
description | Experiments have been conducted in the DIII-D tokamak to explore the
in-situ
growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9–
7.5
×
10
19
m
−3
and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s
−1
(1–
4.2
×
10
20
Si s
−1
) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO
2
is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The
in-situ
and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s
−1
. The technique is estimated to coat a surface area of at least 0.94 m
2
on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation. |
doi_str_mv | 10.1088/1741-4326/acee98 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_acee98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_781fb18a58d34d41b582be742856db3a</doaj_id><sourcerecordid>nfacee98</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</originalsourceid><addsrcrecordid>eNp1kc1vFSEUxYnRxGfbfZfEjRuxMMAMLE3jx0uauFDX5MJAH68zMAEa43_fGcd0paub3PzOubnnIHTN6AdGlbphg2BE8K6_Aee9Vi_Q4Xn1Eh0o7TSRksnX6E2tZ0qZYJwfUDomUmN7xC5Di-ke54BrnKLLiZToTjjEaa44J9zyA8zwgJcJ6gwkgNtwl-clJ59axb9iO-HiYSItzh5_j3iG5kuECcd09q7FnC7RqwBT9Vd_5wX6-fnTj9uv5O7bl-PtxzviBKWNcOHVoK0QVEoXOif7EWSvlRRs7KzUvR8c65TVYx_8oClYsM7TMAycK9uN_AIdd98xw9ksJc5QfpsM0fxZ5HJvoLToJm8GxYJlCqQauRgFs1J11g-iU-tVy2H1ert75dqiqS42705rPml9yTCtN3KF6A65kmstPjwfZdRsBZmtDbO1YfaCVsm7XRLzYs75saQ1EZOC6fku6ikVZhnDSr7_B_lf4yc5BJ-x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><source>Alma/SFX Local Collection</source><creator>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S.</creator><creatorcontrib>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S. ; the DIII-D Team ; General Atomics, San Diego, CA (United States) ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Experiments have been conducted in the DIII-D tokamak to explore the
in-situ
growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9–
7.5
×
10
19
m
−3
and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s
−1
(1–
4.2
×
10
20
Si s
−1
) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO
2
is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The
in-situ
and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s
−1
. The technique is estimated to coat a surface area of at least 0.94 m
2
on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/acee98</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>divertor ; erosion ; material migration ; plasma-facing components ; real-time coating ; silicon oxide ; siliconization</subject><ispartof>Nuclear fusion, 2023-10, Vol.63 (10), p.106004</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</cites><orcidid>0000-0003-4195-177X ; 0000-0003-1920-2799 ; 0000-0003-1601-2973 ; 0000-0002-9605-6871 ; 0000-0002-4263-252X ; 0000-0002-6451-0291 ; 0000-0002-4846-4598 ; 0000-0003-1369-1739 ; 0000-0002-0196-9919 ; 0000-0002-0094-0209 ; 0000-0002-5266-4269 ; 0000-0002-8201-2528 ; 0000-0002-7109-2278 ; 0000-0002-1477-423X ; 0000-0001-6235-6692 ; 0000000252664269 ; 0000000319202799 ; 0000000316012973 ; 000000024263252X ; 000000034195177X ; 0000000248464598 ; 000000021477423X ; 0000000313691739 ; 0000000200940209 ; 0000000296056871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1994285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Effenberg, F.</creatorcontrib><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Sinclair, G.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Bortolon, A.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Laggner, F.M.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Mauzey, D.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>Scotti, F.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Wilcox, R.S.</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Experiments have been conducted in the DIII-D tokamak to explore the
in-situ
growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9–
7.5
×
10
19
m
−3
and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s
−1
(1–
4.2
×
10
20
Si s
−1
) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO
2
is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The
in-situ
and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s
−1
. The technique is estimated to coat a surface area of at least 0.94 m
2
on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</description><subject>divertor</subject><subject>erosion</subject><subject>material migration</subject><subject>plasma-facing components</subject><subject>real-time coating</subject><subject>silicon oxide</subject><subject>siliconization</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kc1vFSEUxYnRxGfbfZfEjRuxMMAMLE3jx0uauFDX5MJAH68zMAEa43_fGcd0paub3PzOubnnIHTN6AdGlbphg2BE8K6_Aee9Vi_Q4Xn1Eh0o7TSRksnX6E2tZ0qZYJwfUDomUmN7xC5Di-ke54BrnKLLiZToTjjEaa44J9zyA8zwgJcJ6gwkgNtwl-clJ59axb9iO-HiYSItzh5_j3iG5kuECcd09q7FnC7RqwBT9Vd_5wX6-fnTj9uv5O7bl-PtxzviBKWNcOHVoK0QVEoXOif7EWSvlRRs7KzUvR8c65TVYx_8oClYsM7TMAycK9uN_AIdd98xw9ksJc5QfpsM0fxZ5HJvoLToJm8GxYJlCqQauRgFs1J11g-iU-tVy2H1ert75dqiqS42705rPml9yTCtN3KF6A65kmstPjwfZdRsBZmtDbO1YfaCVsm7XRLzYs75saQ1EZOC6fku6ikVZhnDSr7_B_lf4yc5BJ-x</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Effenberg, F.</creator><creator>Abe, S.</creator><creator>Sinclair, G.</creator><creator>Abrams, T.</creator><creator>Bortolon, A.</creator><creator>Wampler, W.R.</creator><creator>Laggner, F.M.</creator><creator>Rudakov, D.L.</creator><creator>Bykov, I.</creator><creator>Lasnier, C.J.</creator><creator>Mauzey, D.</creator><creator>Nagy, A.</creator><creator>Nazikian, R.</creator><creator>Scotti, F.</creator><creator>Wang, H.Q.</creator><creator>Wilcox, R.S.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4195-177X</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0003-1601-2973</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0002-4263-252X</orcidid><orcidid>https://orcid.org/0000-0002-6451-0291</orcidid><orcidid>https://orcid.org/0000-0002-4846-4598</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0002-0094-0209</orcidid><orcidid>https://orcid.org/0000-0002-5266-4269</orcidid><orcidid>https://orcid.org/0000-0002-8201-2528</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0001-6235-6692</orcidid><orcidid>https://orcid.org/0000000252664269</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000316012973</orcidid><orcidid>https://orcid.org/000000024263252X</orcidid><orcidid>https://orcid.org/000000034195177X</orcidid><orcidid>https://orcid.org/0000000248464598</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000200940209</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid></search><sort><creationdate>20231001</creationdate><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><author>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>divertor</topic><topic>erosion</topic><topic>material migration</topic><topic>plasma-facing components</topic><topic>real-time coating</topic><topic>silicon oxide</topic><topic>siliconization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Effenberg, F.</creatorcontrib><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Sinclair, G.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Bortolon, A.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Laggner, F.M.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Mauzey, D.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>Scotti, F.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Wilcox, R.S.</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Effenberg, F.</au><au>Abe, S.</au><au>Sinclair, G.</au><au>Abrams, T.</au><au>Bortolon, A.</au><au>Wampler, W.R.</au><au>Laggner, F.M.</au><au>Rudakov, D.L.</au><au>Bykov, I.</au><au>Lasnier, C.J.</au><au>Mauzey, D.</au><au>Nagy, A.</au><au>Nazikian, R.</au><au>Scotti, F.</au><au>Wang, H.Q.</au><au>Wilcox, R.S.</au><aucorp>the DIII-D Team</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>63</volume><issue>10</issue><spage>106004</spage><pages>106004-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Experiments have been conducted in the DIII-D tokamak to explore the
in-situ
growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9–
7.5
×
10
19
m
−3
and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s
−1
(1–
4.2
×
10
20
Si s
−1
) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO
2
is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The
in-situ
and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s
−1
. The technique is estimated to coat a surface area of at least 0.94 m
2
on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/acee98</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4195-177X</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0003-1601-2973</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0002-4263-252X</orcidid><orcidid>https://orcid.org/0000-0002-6451-0291</orcidid><orcidid>https://orcid.org/0000-0002-4846-4598</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0002-0094-0209</orcidid><orcidid>https://orcid.org/0000-0002-5266-4269</orcidid><orcidid>https://orcid.org/0000-0002-8201-2528</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0001-6235-6692</orcidid><orcidid>https://orcid.org/0000000252664269</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000316012973</orcidid><orcidid>https://orcid.org/000000024263252X</orcidid><orcidid>https://orcid.org/000000034195177X</orcidid><orcidid>https://orcid.org/0000000248464598</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000200940209</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2023-10, Vol.63 (10), p.106004 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_4326_acee98 |
source | Alma/SFX Local Collection |
subjects | divertor erosion material migration plasma-facing components real-time coating silicon oxide siliconization |
title | In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20coating%20of%20silicon-rich%20films%20on%20tokamak%20plasma-facing%20components%20with%20real-time%20Si%20material%20injection&rft.jtitle=Nuclear%20fusion&rft.au=Effenberg,%20F.&rft.aucorp=the%20DIII-D%20Team&rft.date=2023-10-01&rft.volume=63&rft.issue=10&rft.spage=106004&rft.pages=106004-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/acee98&rft_dat=%3Ciop_cross%3Enfacee98%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |