Loading…

In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection

Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diamet...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2023-10, Vol.63 (10), p.106004
Main Authors: Effenberg, F., Abe, S., Sinclair, G., Abrams, T., Bortolon, A., Wampler, W.R., Laggner, F.M., Rudakov, D.L., Bykov, I., Lasnier, C.J., Mauzey, D., Nagy, A., Nazikian, R., Scotti, F., Wang, H.Q., Wilcox, R.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3
container_end_page
container_issue 10
container_start_page 106004
container_title Nuclear fusion
container_volume 63
creator Effenberg, F.
Abe, S.
Sinclair, G.
Abrams, T.
Bortolon, A.
Wampler, W.R.
Laggner, F.M.
Rudakov, D.L.
Bykov, I.
Lasnier, C.J.
Mauzey, D.
Nagy, A.
Nazikian, R.
Scotti, F.
Wang, H.Q.
Wilcox, R.S.
description Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9– 7.5 × 10 19 m −3 and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s −1 (1– 4.2 × 10 20 Si s −1 ) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO 2 is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The in-situ and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s −1 . The technique is estimated to coat a surface area of at least 0.94 m 2 on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.
doi_str_mv 10.1088/1741-4326/acee98
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_acee98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_781fb18a58d34d41b582be742856db3a</doaj_id><sourcerecordid>nfacee98</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</originalsourceid><addsrcrecordid>eNp1kc1vFSEUxYnRxGfbfZfEjRuxMMAMLE3jx0uauFDX5MJAH68zMAEa43_fGcd0paub3PzOubnnIHTN6AdGlbphg2BE8K6_Aee9Vi_Q4Xn1Eh0o7TSRksnX6E2tZ0qZYJwfUDomUmN7xC5Di-ke54BrnKLLiZToTjjEaa44J9zyA8zwgJcJ6gwkgNtwl-clJ59axb9iO-HiYSItzh5_j3iG5kuECcd09q7FnC7RqwBT9Vd_5wX6-fnTj9uv5O7bl-PtxzviBKWNcOHVoK0QVEoXOif7EWSvlRRs7KzUvR8c65TVYx_8oClYsM7TMAycK9uN_AIdd98xw9ksJc5QfpsM0fxZ5HJvoLToJm8GxYJlCqQauRgFs1J11g-iU-tVy2H1ert75dqiqS42705rPml9yTCtN3KF6A65kmstPjwfZdRsBZmtDbO1YfaCVsm7XRLzYs75saQ1EZOC6fku6ikVZhnDSr7_B_lf4yc5BJ-x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><source>Alma/SFX Local Collection</source><creator>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S.</creator><creatorcontrib>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S. ; the DIII-D Team ; General Atomics, San Diego, CA (United States) ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9– 7.5 × 10 19 m −3 and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s −1 (1– 4.2 × 10 20 Si s −1 ) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO 2 is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The in-situ and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s −1 . The technique is estimated to coat a surface area of at least 0.94 m 2 on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/acee98</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>divertor ; erosion ; material migration ; plasma-facing components ; real-time coating ; silicon oxide ; siliconization</subject><ispartof>Nuclear fusion, 2023-10, Vol.63 (10), p.106004</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</cites><orcidid>0000-0003-4195-177X ; 0000-0003-1920-2799 ; 0000-0003-1601-2973 ; 0000-0002-9605-6871 ; 0000-0002-4263-252X ; 0000-0002-6451-0291 ; 0000-0002-4846-4598 ; 0000-0003-1369-1739 ; 0000-0002-0196-9919 ; 0000-0002-0094-0209 ; 0000-0002-5266-4269 ; 0000-0002-8201-2528 ; 0000-0002-7109-2278 ; 0000-0002-1477-423X ; 0000-0001-6235-6692 ; 0000000252664269 ; 0000000319202799 ; 0000000316012973 ; 000000024263252X ; 000000034195177X ; 0000000248464598 ; 000000021477423X ; 0000000313691739 ; 0000000200940209 ; 0000000296056871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1994285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Effenberg, F.</creatorcontrib><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Sinclair, G.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Bortolon, A.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Laggner, F.M.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Mauzey, D.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>Scotti, F.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Wilcox, R.S.</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9– 7.5 × 10 19 m −3 and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s −1 (1– 4.2 × 10 20 Si s −1 ) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO 2 is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The in-situ and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s −1 . The technique is estimated to coat a surface area of at least 0.94 m 2 on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</description><subject>divertor</subject><subject>erosion</subject><subject>material migration</subject><subject>plasma-facing components</subject><subject>real-time coating</subject><subject>silicon oxide</subject><subject>siliconization</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kc1vFSEUxYnRxGfbfZfEjRuxMMAMLE3jx0uauFDX5MJAH68zMAEa43_fGcd0paub3PzOubnnIHTN6AdGlbphg2BE8K6_Aee9Vi_Q4Xn1Eh0o7TSRksnX6E2tZ0qZYJwfUDomUmN7xC5Di-ke54BrnKLLiZToTjjEaa44J9zyA8zwgJcJ6gwkgNtwl-clJ59axb9iO-HiYSItzh5_j3iG5kuECcd09q7FnC7RqwBT9Vd_5wX6-fnTj9uv5O7bl-PtxzviBKWNcOHVoK0QVEoXOif7EWSvlRRs7KzUvR8c65TVYx_8oClYsM7TMAycK9uN_AIdd98xw9ksJc5QfpsM0fxZ5HJvoLToJm8GxYJlCqQauRgFs1J11g-iU-tVy2H1ert75dqiqS42705rPml9yTCtN3KF6A65kmstPjwfZdRsBZmtDbO1YfaCVsm7XRLzYs75saQ1EZOC6fku6ikVZhnDSr7_B_lf4yc5BJ-x</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Effenberg, F.</creator><creator>Abe, S.</creator><creator>Sinclair, G.</creator><creator>Abrams, T.</creator><creator>Bortolon, A.</creator><creator>Wampler, W.R.</creator><creator>Laggner, F.M.</creator><creator>Rudakov, D.L.</creator><creator>Bykov, I.</creator><creator>Lasnier, C.J.</creator><creator>Mauzey, D.</creator><creator>Nagy, A.</creator><creator>Nazikian, R.</creator><creator>Scotti, F.</creator><creator>Wang, H.Q.</creator><creator>Wilcox, R.S.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4195-177X</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0003-1601-2973</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0002-4263-252X</orcidid><orcidid>https://orcid.org/0000-0002-6451-0291</orcidid><orcidid>https://orcid.org/0000-0002-4846-4598</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0002-0094-0209</orcidid><orcidid>https://orcid.org/0000-0002-5266-4269</orcidid><orcidid>https://orcid.org/0000-0002-8201-2528</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0001-6235-6692</orcidid><orcidid>https://orcid.org/0000000252664269</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000316012973</orcidid><orcidid>https://orcid.org/000000024263252X</orcidid><orcidid>https://orcid.org/000000034195177X</orcidid><orcidid>https://orcid.org/0000000248464598</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000200940209</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid></search><sort><creationdate>20231001</creationdate><title>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</title><author>Effenberg, F. ; Abe, S. ; Sinclair, G. ; Abrams, T. ; Bortolon, A. ; Wampler, W.R. ; Laggner, F.M. ; Rudakov, D.L. ; Bykov, I. ; Lasnier, C.J. ; Mauzey, D. ; Nagy, A. ; Nazikian, R. ; Scotti, F. ; Wang, H.Q. ; Wilcox, R.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>divertor</topic><topic>erosion</topic><topic>material migration</topic><topic>plasma-facing components</topic><topic>real-time coating</topic><topic>silicon oxide</topic><topic>siliconization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Effenberg, F.</creatorcontrib><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Sinclair, G.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Bortolon, A.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Laggner, F.M.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Mauzey, D.</creatorcontrib><creatorcontrib>Nagy, A.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>Scotti, F.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Wilcox, R.S.</creatorcontrib><creatorcontrib>the DIII-D Team</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Effenberg, F.</au><au>Abe, S.</au><au>Sinclair, G.</au><au>Abrams, T.</au><au>Bortolon, A.</au><au>Wampler, W.R.</au><au>Laggner, F.M.</au><au>Rudakov, D.L.</au><au>Bykov, I.</au><au>Lasnier, C.J.</au><au>Mauzey, D.</au><au>Nagy, A.</au><au>Nazikian, R.</au><au>Scotti, F.</au><au>Wang, H.Q.</au><au>Wilcox, R.S.</au><aucorp>the DIII-D Team</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>63</volume><issue>10</issue><spage>106004</spage><pages>106004-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Experiments have been conducted in the DIII-D tokamak to explore the in-situ growth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9– 7.5 × 10 19 m −3 and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s −1 (1– 4.2 × 10 20 Si s −1 ) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO 2 is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. The in-situ and ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s −1 . The technique is estimated to coat a surface area of at least 0.94 m 2 on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/acee98</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4195-177X</orcidid><orcidid>https://orcid.org/0000-0003-1920-2799</orcidid><orcidid>https://orcid.org/0000-0003-1601-2973</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0002-4263-252X</orcidid><orcidid>https://orcid.org/0000-0002-6451-0291</orcidid><orcidid>https://orcid.org/0000-0002-4846-4598</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0002-0196-9919</orcidid><orcidid>https://orcid.org/0000-0002-0094-0209</orcidid><orcidid>https://orcid.org/0000-0002-5266-4269</orcidid><orcidid>https://orcid.org/0000-0002-8201-2528</orcidid><orcidid>https://orcid.org/0000-0002-7109-2278</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0001-6235-6692</orcidid><orcidid>https://orcid.org/0000000252664269</orcidid><orcidid>https://orcid.org/0000000319202799</orcidid><orcidid>https://orcid.org/0000000316012973</orcidid><orcidid>https://orcid.org/000000024263252X</orcidid><orcidid>https://orcid.org/000000034195177X</orcidid><orcidid>https://orcid.org/0000000248464598</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><orcidid>https://orcid.org/0000000200940209</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2023-10, Vol.63 (10), p.106004
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_acee98
source Alma/SFX Local Collection
subjects divertor
erosion
material migration
plasma-facing components
real-time coating
silicon oxide
siliconization
title In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20coating%20of%20silicon-rich%20films%20on%20tokamak%20plasma-facing%20components%20with%20real-time%20Si%20material%20injection&rft.jtitle=Nuclear%20fusion&rft.au=Effenberg,%20F.&rft.aucorp=the%20DIII-D%20Team&rft.date=2023-10-01&rft.volume=63&rft.issue=10&rft.spage=106004&rft.pages=106004-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/acee98&rft_dat=%3Ciop_cross%3Enfacee98%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-34e879b44055cf2c56da5698541d2b596e7c128b9d6fe790ababce0f77338b2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true