Loading…

Transmission spectra of an ultrastrongly coupled qubit-dissipative resonator system

We calculate the transmission spectra of a flux qubit coupled to a dissipative resonator in the ultrastrong coupling regime. Such a qubit-oscillator system constitutes the building block of superconducting circuit QED platforms. The calculated transmission of a weak probe field quantifies the respon...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical mechanics 2019-10, Vol.2019 (10), p.104002
Main Authors: MagazzĂą, L, Grifoni, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We calculate the transmission spectra of a flux qubit coupled to a dissipative resonator in the ultrastrong coupling regime. Such a qubit-oscillator system constitutes the building block of superconducting circuit QED platforms. The calculated transmission of a weak probe field quantifies the response of the qubit, in frequency domain, under the sole influence of the oscillator and of its dissipative environment, an Ohmic heat bath. We find the distinctive features of the qubit-resonator system, namely two-dip structures in the calculated transmission, modified by the presence of the dissipative environment. The relative magnitude, positions, and broadening of the dips are determined by the interplay among qubit-oscillator detuning, the strength of their coupling, and the interaction with the heat bath.
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/ab3da8