Loading…

Bare laser-synthesized plasmonic Au and TiN nanoparticles as functional additives to polymer nanofiber platforms for tissue engineering applications

Exhibiting strong optical absorption in the visible – near-infrared, plasmonic nanomaterials can be used as transducers in optical biosensing, contrast agents in bioimaging and synthesizers of photothermal therapy. Such functionalities promise their employment as functional elements in tissue engine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-10, Vol.2058 (1), p.12002
Main Authors: Al-Kattan, A, Kabashin, A V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exhibiting strong optical absorption in the visible – near-infrared, plasmonic nanomaterials can be used as transducers in optical biosensing, contrast agents in bioimaging and synthesizers of photothermal therapy. Such functionalities promise their employment as functional elements in tissue engineering platforms, but such applications typically require ultraclean nanomaterials to minimize toxicity problems, which is not easy using conventional chemical synthesis routes. We recently demonstrated the possibility of fabricating ultraclean bare (ligand-free) plasmonic Au and TiN nanoparticles by ultrashort laser ablation in liquid ambient. Exempt of any toxic contaminants and exhibiting a series of imaging and therapeutic functionalities, these nanomaterials present promising objects for various biomedical applications. Here, we review our recent progress in the co-electrospinning of laser-synthesized Au and TiN nanoparticles with polymers to form functionalized matrices for tissue engineering.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2058/1/012002