Loading…
Crystallization Double-Layer Magneto-Active Films for Magnetophotonics
Magneto-optics, magnetophotonics and magnetoplasmonics stay at the edge of scientific interests last years due to their unique features to manage the light and electromagnet field. Bi-substituted iron garnet (Bi:IG) is one of most promising magneto-optical material for these applications in order to...
Saved in:
Published in: | Journal of physics. Conference series 2021-11, Vol.2091 (1), p.12049 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magneto-optics, magnetophotonics and magnetoplasmonics stay at the edge of scientific interests last years due to their unique features to manage the light and electromagnet field. Bi-substituted iron garnet (Bi:IG) is one of most promising magneto-optical material for these applications in order to its high efficiency in visible and infrared spectra. The possibility to integrate Bi:IG films to silicon semiconductor process leads to creation nanoscale hight performance magneto-optical devices. Bi:IG structures of different composition might be deposited by vacuum deposition on different substrates. The investigation of crystallization process of Bi:IG double-layer films at a different process parameter on gadolinium gallium garnet and fused quartz substrates allowing to determine dependences and suggestions for integration Bi:IG to semiconductor process or multicomponent optical nanostructures. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2091/1/012049 |