Loading…

Cycling performance prediction based on cadence analysis by using multiple regression

This project examined the influence of the cadence, speed, heart rate and power towards the cycling performance by using Garmin Edge 1000. Any change in cadence will affect the speed, heart rate and power of the novice cyclist and the changes pattern will be observed through mobile devices installed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-11, Vol.2107 (1), p.12058
Main Authors: Sudin, Sukhairi, Aziz, Azizi Naim Abdul, Saad, Fathinul Syahir Ahmad, Khalid, Nurul Syahirah, Ibrahim, Ismail Ishaq
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This project examined the influence of the cadence, speed, heart rate and power towards the cycling performance by using Garmin Edge 1000. Any change in cadence will affect the speed, heart rate and power of the novice cyclist and the changes pattern will be observed through mobile devices installed with Garmin Connect application. Every results will be recorded for the next task which analysis the collected data by using machine learning algorithm which is Regression analysis. Regression analysis is a statistical method for modelling the connection between one or more independent variables and a dependent (target) variable. Regression analysis is required to answer these types of prediction problems in machine learning. Regression is a supervised learning technique that aids in the discovery of variable correlations and allows for the prediction of a continuous output variable based on one or more predictor variables. A total of forty days’ worth of events were captured in the dataset. Cadence act as dependent variable, (y) while speed, heart rate and power act as independent variable, (x) in prediction of the cycling performance. Simple linear regression is defined as linear regression with only one input variable (x). When there are several input variables, the linear regression is referred to as multiple linear regression. The research uses a linear regression technique to predict cycling performance based on cadence analysis. The linear regression algorithm reveals a linear relationship between a dependent (y) variable and one or more independent (y) variables, thus the name. Because linear regression reveals a linear relationship, it determines how the value of the dependent variable changes as the value of the independent variable changes. This analysis use the Mean Squared Error (MSE) expense function for Linear Regression, which is the average of squared errors between expected and real values. Value of R squared had been recorded in this project. A low R-squared value means that the independent variable is not describing any of the difference in the dependent variable-regardless of variable importance, this is letting know that the defined independent variable, although meaningful, is not responsible for much of the variance in the dependent variable’s mean. By using multiple regression, the value of R-squared in this project is acceptable because over than 0.7 and as known this project based on human behaviour and usually the R-squared value har
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2107/1/012058