Loading…
The extended Gaussian ensemble and metastabilities in the Blume–Capel model
The Blume-Capel model with infinite-range interactions presents analytical solutions in both canonical and microcanonical ensembles and therefore, its phase diagram is known in both ensembles. This model exhibits nonequivalent solutions and the microcanonical thermodynamical features present peculia...
Saved in:
Published in: | Journal of physics. Conference series 2010-09, Vol.246 (1), p.012018 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Blume-Capel model with infinite-range interactions presents analytical solutions in both canonical and microcanonical ensembles and therefore, its phase diagram is known in both ensembles. This model exhibits nonequivalent solutions and the microcanonical thermodynamical features present peculiar behaviors like nonconcave entropy, negative specific heat, and a jump in the thermodynamical temperature. Examples of nonequivalent ensembles are in general related to systems with long-range interactions that undergo canonical first-order phase transitions. Recently, the extended gaussian ensemble (EGE) solution was obtained for this model. The gaussian ensemble and its extended version can be considered as a regularization of the microcanonical ensemble. They are known to play the role of an interpolating ensemble between the microcanonical and the canonical ones. Here, we explicitly show how the microcanonical energy equilibrium states related to the metastable and unstable canonical solutions for the Blume-Capel model are recovered from EGE, which presents a concave "extended" entropy as a function of energy. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/246/1/012018 |