Loading…
The effect of the impeller eccentricity on the hydrodynamic characteristics of a centrifugal pump
To explore the effect of impeller eccentricity caused by shaft parallel misalignment on the hydrodynamic characteristics of a centrifugal pump, a numerical simulation model based on computational fluid dynamics (CFD) is established. The SST k-ω turbulence model is used to describe the flow field in...
Saved in:
Published in: | Journal of physics. Conference series 2024-02, Vol.2707 (1), p.12015 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To explore the effect of impeller eccentricity caused by shaft parallel misalignment on the hydrodynamic characteristics of a centrifugal pump, a numerical simulation model based on computational fluid dynamics (CFD) is established. The SST
k-ω
turbulence model is used to describe the flow field in centrifugal pump. The eccentric motion of the impeller is described by the sliding mesh method (SMM). The results indicates that the nonuniformity and instability of flow field will be aggravated with the increment of impeller eccentricity, which then reduce the pump head and efficiency to a certain extent. The radial force exerted on the impeller is directly proportional to the eccentricity of the impeller. In addition, the impeller eccentricity has a significant impact on the peak rotation frequency of shaft frequency. This study can provide a numerical reference for eccentricity fault diagnosis and vibration control of centrifugal pump impellers to carry out optimal design and vibration reduction. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2707/1/012015 |