Loading…
Kinematic analysis of a spatial mechanism for estimating shaking effects
Spatial mechanisms are the most general category of kinematic devices. They offer the greatest capability to accomplish any desired kinematic task. A mechanism exerts forces and moments on its supporting frame, which result in vibration. Besides of its effect on efficiency, reducing vibration has be...
Saved in:
Published in: | Journal of physics. Conference series 2015-12, Vol.662 (1), p.12024 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatial mechanisms are the most general category of kinematic devices. They offer the greatest capability to accomplish any desired kinematic task. A mechanism exerts forces and moments on its supporting frame, which result in vibration. Besides of its effect on efficiency, reducing vibration has become inevitable in the current industrial environment where stern standards on noise and vibration prevail. Balancing of shaking forces and shaking moments in mechanisms is important in order to improve their dynamic performance and fatigue life by reducing vibration, noise and wear. The analysis and synthesis of spatial mechanisms which involves extensive vector mathematics and linear algebra is to be simplified to be taught to engineers in undergraduate education. In the present paper the kinematic analysis of a spatial four-link RSCR mechanism is done to get the velocities and accelerations of its various links which is necessary for the estimation of inertia forces in a mechanism. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/662/1/012024 |