Loading…

Progress in the Development of the Lead Tungstate Crystals for EM-Calorimetry in High-Energy Physics

Even at present time there is a strong interest and demand for high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic (EM) calorimetry. PWO is implemented into the EM calorimeter of the CMS-ECAL detector at LHC [1] and required for the completion of the PANDA EMC [2] and various ongoi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2017-11, Vol.928 (1), p.12031
Main Authors: Novotny, R. W., Brinkmann, K.-T., Borisevich, A., Dormenev, V., Houzvicka, J., Korjik, M., Zaunick, H.-G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Even at present time there is a strong interest and demand for high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic (EM) calorimetry. PWO is implemented into the EM calorimeter of the CMS-ECAL detector at LHC [1] and required for the completion of the PANDA EMC [2] and various ongoing detector projects at Jefferson Lab. The successful mass production of PWO using the Czochralski method was stopped after bankruptcy of the Bogoroditsk Technical Chemical Plant (BTCP) in Russia as major producer so far. The Shanghai Institute of Ceramics, Chinese Academy of Science (China) was considered as an alternative producer using the modified Bridgman method. The company CRYTUR (Turnov, Czech Republic) with good experience in the development and production of different types of inorganic oxide crystals has restarted at the end of 2014 the development of lead tungstate for mass production based on the Czochralski method. An impressive progress was achieved since then. The growing technology was optimized to produce full size samples with the quality meeting the PANDA-EMC specifications for PWO-II. We will present a detailed progress report on the research program in collaboration with groups at Orsay and JLab. The full size crystals will be characterized with respect to optical performance, light yield, kinetics and radiation hardness.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/928/1/012031