Loading…
Test-beam and simulation studies towards RPWELL-based DHCAL
Digital Hadronic Calorimeters (DHCAL) were suggested for future Colliders as part of the particle-flow concept. Though studied mainly with RPC, studies focusing on sampling elements based on Micro-Pattern Gaseous Detector have shown the potential advantages; they can be operated with environment-fri...
Saved in:
Published in: | Journal of instrumentation 2022-12, Vol.17 (12), p.P12008 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital Hadronic Calorimeters (DHCAL) were suggested for future Colliders as part of the particle-flow concept. Though studied mainly with RPC, studies focusing on sampling elements based on Micro-Pattern Gaseous Detector have shown the potential advantages; they can be operated with environment-friendly gases and reach similar detection efficiency at lower average pad multiplicity. We summarize here the experimental test-beam results of a small-size DHCAL prototype, incorporating six Micromegas and two RPWELL sampling elements, interlaced with steel-absorber plates. It was investigated with 2–6 GeV pion beams at the CERN/PS beam facility. The data permitted validating a GEANT4 simulation framework of a DHCAL, and evaluating the expected pion energy resolution of a full-scale RPWELL-based calorimeter. The pion energy resolution derived for the RPWELL concept is competitive to that of glass RPC and Micromegas sampling techniques. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/17/12/P12008 |