Loading…
Biodegradable zein-polydopamine polymeric scaffold impregnated with TiO 2 nanoparticles for skin tissue engineering
Polymers from renewable resources are attractive for various industrial and biomedical applications owing to their compatibility, degradability, ease of use and availability. Rapid progress in the development of nanotechnology has improved the characteristic features of polymers in composite materia...
Saved in:
Published in: | Biomedical materials (Bristol) 2017-09, Vol.12 (5), p.055008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymers from renewable resources are attractive for various industrial and biomedical applications owing to their compatibility, degradability, ease of use and availability. Rapid progress in the development of nanotechnology has improved the characteristic features of polymers in composite materials by reinforcing the nanosized particulates during fabrication. In this study, we have attempted to incorporate metal oxide nanoparticles into polymeric nanofibers in order to enhance the overall properties of the composite scaffold. The thermal stability of a TiO
nanoparticle-impregnated zein-polydopamine-based nanofibrous scaffold was investigated, and its potential as a suitable wound dressing material was demonstrated. Further, the influence of nanotopographic structure on improved adhesion, proliferation and migration of cells was ascertained through in vitro assays. The constructive results obtained were well corroborated with the in vivo excisional wound healing experiment. Thus, the competence of the prepared nanofibrous scaffold was examined both in vitro and in vivo and demonstrated to be an alternative, cost-effective biomaterial for skin tissue engineering applications. |
---|---|
ISSN: | 1748-605X 1748-605X |
DOI: | 10.1088/1748-605X/aa7d5a |