Loading…

Atmospheric circulation patterns which promote winter Arctic sea ice decline

The impact of winter atmospheric blocking over the Ural Mountains region (UB) coincident with different phases of the North Atlantic Oscillation (NAO) on the sea ice variability over the Barents and Kara Seas (BKS) in winter is investigated. It is found that the UB in conjunction with the positive p...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2017-05, Vol.12 (5), p.54017
Main Authors: Luo, Binhe, Luo, Dehai, Wu, Lixin, Zhong, Linhao, Simmonds, Ian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact of winter atmospheric blocking over the Ural Mountains region (UB) coincident with different phases of the North Atlantic Oscillation (NAO) on the sea ice variability over the Barents and Kara Seas (BKS) in winter is investigated. It is found that the UB in conjunction with the positive phase of the NAO (NAO+) leads to the strongest sea ice decline. During this phase composites and trajectory analyses reveal an efficient moisture pathway to the BKS from the mid-latitude North Atlantic near the Gulf Stream Extension region where water vapor is abundant due to high sea surface temperatures. The NAO+-UB combination is an optimal circulation pattern that significantly increases the BKS water vapor that plays a major role in the BKS warming and sea ice reduction, while the increased sensible and latent heat fluxes play secondary roles. By contrast, much fewer dramatic impacts on the BKS are observed when the UB coincides with the neutral or negative phases of the NAO. Our results present new insights into the complex processes involved with Arctic sea ice reduction and warming. The mechanisms highlighted here potentially offer a perspective into the mechanisms behind Arctic multi-decadal climate variability.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aa69d0