Loading…
Impact of geothermal expansion and lithium extraction in the Salton Sea known geothermal resource area (SS-KGRA) on local water resources
Saline brines currently being brought to the surface to produce geothermal energy in the Salton Sea region of California contain high concentrations of lithium that could potentially be extracted before the brine is reinjected back into the geothermal reservoir. This would create a new supply chain...
Saved in:
Published in: | Environmental research letters 2024-10, Vol.19 (10), p.104011 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Saline brines currently being brought to the surface to produce geothermal energy in the Salton Sea region of California contain high concentrations of lithium that could potentially be extracted before the brine is reinjected back into the geothermal reservoir. This would create a new supply chain of domestically sourced lithium for the United States to produce lithium-based batteries that will help drive the transition to a renewable-based energy grid. Plans to expand geothermal production along with lithium extraction are being considered in the Salton Sea known geothermal resource area. We discuss water availability and quality issues and potential concerns about water pollution associated with this geothermal expansion and lithium production in the context of potential future restrictions on water extractions from the Colorado River Basin. We estimate that water demand for currently proposed geothermal production and lithium extraction facilities only accounts for ∼4% of the historical water supply in the region. Regional water allocation will be more impacted by the proposed cuts to the region’s water allocation from the Colorado River between now and 2050 than by expansion of geothermal production with associated lithium extraction. Accurately planning for water needs in the future will require more specific information about water demands of the lithium extraction and refining processes. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/ad6a73 |