Loading…

Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301
Main Authors: Burrello, M, Fulga, I C, Lepori, L, Trombettoni, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113
cites cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113
container_end_page
container_issue 45
container_start_page 455301
container_title Journal of physics. A, Mathematical and theoretical
container_volume 50
creator Burrello, M
Fulga, I C
Lepori, L
Trombettoni, A
description We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.
doi_str_mv 10.1088/1751-8121/aa8d26
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aa8d26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa8d26</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKt7l3kAxyaZv8yylPoDBTe6Hu4kmZKSSUqSkeoT-NhmrHbn6lwu5xw4H0K3lNxTwvmC1iXNOGV0AcAlq87Q7PQ6P900v0RXIewIKQvSsBn6Wh9ARCw1bJ0Foz8hamex67EYOy2wgRi1UHhwUpmAtcXCDYOyYfQQFV52ymiweICtVcmIezMeVMBgJY4ebDA_fWBS8h18skZsnc3-cnsXlY0aTLhGF30SdfOrc_T2sH5dPWWbl8fn1XKTCcZJzKqSUcaaTuRNxwtelrwGVlPoqlJS1UvelLLOExEColJdUVRcFmk3VcC7JPkckWOv8C4Er_p27_UA_qOlpJ1IthOqdsLWHkmmyN0xot2-3bnRpz3hf_s3zIV3ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</creator><creatorcontrib>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</creatorcontrib><description>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa8d26</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>gauge potentials ; lattice models ; ultracold quantum gases</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</citedby><cites>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</cites><orcidid>0000-0002-8730-7085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Burrello, M</creatorcontrib><creatorcontrib>Fulga, I C</creatorcontrib><creatorcontrib>Lepori, L</creatorcontrib><creatorcontrib>Trombettoni, A</creatorcontrib><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</description><subject>gauge potentials</subject><subject>lattice models</subject><subject>ultracold quantum gases</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKt7l3kAxyaZv8yylPoDBTe6Hu4kmZKSSUqSkeoT-NhmrHbn6lwu5xw4H0K3lNxTwvmC1iXNOGV0AcAlq87Q7PQ6P900v0RXIewIKQvSsBn6Wh9ARCw1bJ0Foz8hamex67EYOy2wgRi1UHhwUpmAtcXCDYOyYfQQFV52ymiweICtVcmIezMeVMBgJY4ebDA_fWBS8h18skZsnc3-cnsXlY0aTLhGF30SdfOrc_T2sH5dPWWbl8fn1XKTCcZJzKqSUcaaTuRNxwtelrwGVlPoqlJS1UvelLLOExEColJdUVRcFmk3VcC7JPkckWOv8C4Er_p27_UA_qOlpJ1IthOqdsLWHkmmyN0xot2-3bnRpz3hf_s3zIV3ig</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Burrello, M</creator><creator>Fulga, I C</creator><creator>Lepori, L</creator><creator>Trombettoni, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8730-7085</orcidid></search><sort><creationdate>20171110</creationdate><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><author>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>gauge potentials</topic><topic>lattice models</topic><topic>ultracold quantum gases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burrello, M</creatorcontrib><creatorcontrib>Fulga, I C</creatorcontrib><creatorcontrib>Lepori, L</creatorcontrib><creatorcontrib>Trombettoni, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burrello, M</au><au>Fulga, I C</au><au>Lepori, L</au><au>Trombettoni, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-11-10</date><risdate>2017</risdate><volume>50</volume><issue>45</issue><spage>455301</spage><pages>455301-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa8d26</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8730-7085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_aa8d26
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects gauge potentials
lattice models
ultracold quantum gases
title Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20diagonalization%20of%20cubic%20lattice%20models%20in%20commensurate%20Abelian%20magnetic%20fluxes%20and%20translational%20invariant%20non-Abelian%20potentials&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Burrello,%20M&rft.date=2017-11-10&rft.volume=50&rft.issue=45&rft.spage=455301&rft.pages=455301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa8d26&rft_dat=%3Ciop_cross%3Eaaa8d26%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true