Loading…
Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials
We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case o...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113 |
container_end_page | |
container_issue | 45 |
container_start_page | 455301 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 50 |
creator | Burrello, M Fulga, I C Lepori, L Trombettoni, A |
description | We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations. |
doi_str_mv | 10.1088/1751-8121/aa8d26 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aa8d26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa8d26</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKt7l3kAxyaZv8yylPoDBTe6Hu4kmZKSSUqSkeoT-NhmrHbn6lwu5xw4H0K3lNxTwvmC1iXNOGV0AcAlq87Q7PQ6P900v0RXIewIKQvSsBn6Wh9ARCw1bJ0Foz8hamex67EYOy2wgRi1UHhwUpmAtcXCDYOyYfQQFV52ymiweICtVcmIezMeVMBgJY4ebDA_fWBS8h18skZsnc3-cnsXlY0aTLhGF30SdfOrc_T2sH5dPWWbl8fn1XKTCcZJzKqSUcaaTuRNxwtelrwGVlPoqlJS1UvelLLOExEColJdUVRcFmk3VcC7JPkckWOv8C4Er_p27_UA_qOlpJ1IthOqdsLWHkmmyN0xot2-3bnRpz3hf_s3zIV3ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</creator><creatorcontrib>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</creatorcontrib><description>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa8d26</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>gauge potentials ; lattice models ; ultracold quantum gases</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</citedby><cites>FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</cites><orcidid>0000-0002-8730-7085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Burrello, M</creatorcontrib><creatorcontrib>Fulga, I C</creatorcontrib><creatorcontrib>Lepori, L</creatorcontrib><creatorcontrib>Trombettoni, A</creatorcontrib><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</description><subject>gauge potentials</subject><subject>lattice models</subject><subject>ultracold quantum gases</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKt7l3kAxyaZv8yylPoDBTe6Hu4kmZKSSUqSkeoT-NhmrHbn6lwu5xw4H0K3lNxTwvmC1iXNOGV0AcAlq87Q7PQ6P900v0RXIewIKQvSsBn6Wh9ARCw1bJ0Foz8hamex67EYOy2wgRi1UHhwUpmAtcXCDYOyYfQQFV52ymiweICtVcmIezMeVMBgJY4ebDA_fWBS8h18skZsnc3-cnsXlY0aTLhGF30SdfOrc_T2sH5dPWWbl8fn1XKTCcZJzKqSUcaaTuRNxwtelrwGVlPoqlJS1UvelLLOExEColJdUVRcFmk3VcC7JPkckWOv8C4Er_p27_UA_qOlpJ1IthOqdsLWHkmmyN0xot2-3bnRpz3hf_s3zIV3ig</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Burrello, M</creator><creator>Fulga, I C</creator><creator>Lepori, L</creator><creator>Trombettoni, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8730-7085</orcidid></search><sort><creationdate>20171110</creationdate><title>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</title><author>Burrello, M ; Fulga, I C ; Lepori, L ; Trombettoni, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>gauge potentials</topic><topic>lattice models</topic><topic>ultracold quantum gases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burrello, M</creatorcontrib><creatorcontrib>Fulga, I C</creatorcontrib><creatorcontrib>Lepori, L</creatorcontrib><creatorcontrib>Trombettoni, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burrello, M</au><au>Fulga, I C</au><au>Lepori, L</au><au>Trombettoni, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-11-10</date><risdate>2017</risdate><volume>50</volume><issue>45</issue><spage>455301</spage><pages>455301-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa8d26</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8730-7085</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2017-11, Vol.50 (45), p.455301 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_aa8d26 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | gauge potentials lattice models ultracold quantum gases |
title | Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20diagonalization%20of%20cubic%20lattice%20models%20in%20commensurate%20Abelian%20magnetic%20fluxes%20and%20translational%20invariant%20non-Abelian%20potentials&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Burrello,%20M&rft.date=2017-11-10&rft.volume=50&rft.issue=45&rft.spage=455301&rft.pages=455301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa8d26&rft_dat=%3Ciop_cross%3Eaaa8d26%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-6521229bc39b8485587a271ab65d1efd895d731080ac6eb4468d48111ea8b1113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |