Loading…

Two-dimensional superintegrable systems from operator algebras in one dimension

We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-03, Vol.52 (11), p.115202
Main Authors: Marquette, Ian, Sajedi, Masoumeh, Winternitz, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3
cites cdi_FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3
container_end_page
container_issue 11
container_start_page 115202
container_title Journal of physics. A, Mathematical and theoretical
container_volume 52
creator Marquette, Ian
Sajedi, Masoumeh
Winternitz, Pavel
description We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p . We assume that their Poisson commutator vanishes, is a constant, a constant times H, or a constant times K. In the quantum case H and K are operators and their Lie commutator has one of the above properties. We use two copies of such pairs to generate two-dimensional superintegrable systems in the Euclidean space E2, allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in E2 can be obtained in this manner and we obtain new ones for N  =  4.
doi_str_mv 10.1088/1751-8121/ab01a2
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab01a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aab01a2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3</originalsourceid><addsrcrecordid>eNp1kE9rwzAMxc3YYF23-47-AMtqOXHtHEfZPyj00p2NksolJYmDnTL67ZeQkVtPEpLeQ7_H2DOIVxDGrEArSAxIWGEhAOUNW8yj27mH9J49xHgSQmUilwu22__65FA11MbKt1jzeO4oVG1Px4BFTTxeYk9N5C74hvthh70PHOsjFQEjr1ruW-KzwyO7c1hHevqvS_bz8b7ffCXb3ef35m2blNKIPlFZJqV2OiV1KNal0KrUw08lOpKpWZeFUARGa4lIAA6Ny2WqszTLAQvnXLpkYvItg48xkLNdqBoMFwvCjoHYkdiO9HYKZJC8TJLKd_bkz2HAjdfP_wCdfGMF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-dimensional superintegrable systems from operator algebras in one dimension</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Marquette, Ian ; Sajedi, Masoumeh ; Winternitz, Pavel</creator><creatorcontrib>Marquette, Ian ; Sajedi, Masoumeh ; Winternitz, Pavel</creatorcontrib><description>We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p . We assume that their Poisson commutator vanishes, is a constant, a constant times H, or a constant times K. In the quantum case H and K are operators and their Lie commutator has one of the above properties. We use two copies of such pairs to generate two-dimensional superintegrable systems in the Euclidean space E2, allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in E2 can be obtained in this manner and we obtain new ones for N  =  4.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab01a2</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>ladder operators ; Painlevé transcendents ; separation of variables ; superintegrable systems</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2019-03, Vol.52 (11), p.115202</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3</citedby><cites>FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3</cites><orcidid>0000-0001-7230-7982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Marquette, Ian</creatorcontrib><creatorcontrib>Sajedi, Masoumeh</creatorcontrib><creatorcontrib>Winternitz, Pavel</creatorcontrib><title>Two-dimensional superintegrable systems from operator algebras in one dimension</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p . We assume that their Poisson commutator vanishes, is a constant, a constant times H, or a constant times K. In the quantum case H and K are operators and their Lie commutator has one of the above properties. We use two copies of such pairs to generate two-dimensional superintegrable systems in the Euclidean space E2, allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in E2 can be obtained in this manner and we obtain new ones for N  =  4.</description><subject>ladder operators</subject><subject>Painlevé transcendents</subject><subject>separation of variables</subject><subject>superintegrable systems</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9rwzAMxc3YYF23-47-AMtqOXHtHEfZPyj00p2NksolJYmDnTL67ZeQkVtPEpLeQ7_H2DOIVxDGrEArSAxIWGEhAOUNW8yj27mH9J49xHgSQmUilwu22__65FA11MbKt1jzeO4oVG1Px4BFTTxeYk9N5C74hvthh70PHOsjFQEjr1ruW-KzwyO7c1hHevqvS_bz8b7ffCXb3ef35m2blNKIPlFZJqV2OiV1KNal0KrUw08lOpKpWZeFUARGa4lIAA6Ny2WqszTLAQvnXLpkYvItg48xkLNdqBoMFwvCjoHYkdiO9HYKZJC8TJLKd_bkz2HAjdfP_wCdfGMF</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Marquette, Ian</creator><creator>Sajedi, Masoumeh</creator><creator>Winternitz, Pavel</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7230-7982</orcidid></search><sort><creationdate>20190315</creationdate><title>Two-dimensional superintegrable systems from operator algebras in one dimension</title><author>Marquette, Ian ; Sajedi, Masoumeh ; Winternitz, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ladder operators</topic><topic>Painlevé transcendents</topic><topic>separation of variables</topic><topic>superintegrable systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquette, Ian</creatorcontrib><creatorcontrib>Sajedi, Masoumeh</creatorcontrib><creatorcontrib>Winternitz, Pavel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquette, Ian</au><au>Sajedi, Masoumeh</au><au>Winternitz, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional superintegrable systems from operator algebras in one dimension</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>52</volume><issue>11</issue><spage>115202</spage><pages>115202-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p . We assume that their Poisson commutator vanishes, is a constant, a constant times H, or a constant times K. In the quantum case H and K are operators and their Lie commutator has one of the above properties. We use two copies of such pairs to generate two-dimensional superintegrable systems in the Euclidean space E2, allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in E2 can be obtained in this manner and we obtain new ones for N  =  4.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab01a2</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7230-7982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2019-03, Vol.52 (11), p.115202
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ab01a2
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects ladder operators
Painlevé transcendents
separation of variables
superintegrable systems
title Two-dimensional superintegrable systems from operator algebras in one dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20superintegrable%20systems%20from%20operator%20algebras%20in%20one%20dimension&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Marquette,%20Ian&rft.date=2019-03-15&rft.volume=52&rft.issue=11&rft.spage=115202&rft.pages=115202-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab01a2&rft_dat=%3Ciop_cross%3Eaab01a2%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-544227f73e5db6c075c7005cafe2386cb05e18772aae11fa8f923743491abfff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true