Loading…
Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case
We consider the Langevin dynamics of a many-body system of interacting particles in d dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and glassy aging dynamics. The pair interaction pot...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-04, Vol.52 (14), p.144002 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the Langevin dynamics of a many-body system of interacting particles in d dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and glassy aging dynamics. The pair interaction potential is generic, and can be chosen to model colloids, atomic liquids, and granular materials. In the limit , we show that the dynamics can be exactly reduced to a single one-dimensional effective stochastic equation, with an effective thermal bath described by kernels that have to be determined self-consistently. We present two complementary derivations, via a dynamical cavity method and via a path-integral approach. From the effective stochastic equation, one can compute dynamical observables such as pressure, shear stress, particle mean-square displacement, and the associated response function. As an application of our results, we derive dynamically the 'state-following' equations that describe the response of a glass to quasistatic perturbations, thus bypassing the use of replicas. The article is written in a modular way, that allows the reader to skip the details of the derivations and focus on the physical setting and the main results. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ab099d |