Loading…

Quiver Yangians and -algebras for generalized conifolds

We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203
Main Author: Bao, Jiakang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3
cites cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3
container_end_page
container_issue 22
container_start_page 225203
container_title Journal of physics. A, Mathematical and theoretical
container_volume 56
creator Bao, Jiakang
description We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the -algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.
doi_str_mv 10.1088/1751-8121/acd037
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acd037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacd037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</originalsourceid><addsrcrecordid>eNp1j01Lw0AQhhdRsFbvHvcHGDv7lU2OUvyCggh68LTMfoWUuCm7VNBfb0OkN0_v8DLPMA8h1wxuGTTNimnFqoZxtkLnQegTsjhWp8eZiXNyUcoWQElo-YLo133_FTL9wNT1mArF5GmFQxdsxkLjmGkXUsg49D_BUzemPo6DL5fkLOJQwtVfLsn7w_3b-qnavDw-r-82lWNc6cpGrlC1lrnY2lopKZ1AGUUDVoDwwlmNEqSoGddWcAG-5hwY2uBBNzaKJYH5rstjKTlEs8v9J-Zvw8BM4mYyM5OlmcUPyM2M9OPObMd9TocH_1__BbzAWIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quiver Yangians and -algebras for generalized conifolds</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bao, Jiakang</creator><creatorcontrib>Bao, Jiakang</creatorcontrib><description>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the -algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acd037</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>quiver ; W-algebras ; Yangians</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</citedby><cites>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</cites><orcidid>0000-0002-9583-1696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Jiakang</creatorcontrib><title>Quiver Yangians and -algebras for generalized conifolds</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the -algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</description><subject>quiver</subject><subject>W-algebras</subject><subject>Yangians</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AQhhdRsFbvHvcHGDv7lU2OUvyCggh68LTMfoWUuCm7VNBfb0OkN0_v8DLPMA8h1wxuGTTNimnFqoZxtkLnQegTsjhWp8eZiXNyUcoWQElo-YLo133_FTL9wNT1mArF5GmFQxdsxkLjmGkXUsg49D_BUzemPo6DL5fkLOJQwtVfLsn7w_3b-qnavDw-r-82lWNc6cpGrlC1lrnY2lopKZ1AGUUDVoDwwlmNEqSoGddWcAG-5hwY2uBBNzaKJYH5rstjKTlEs8v9J-Zvw8BM4mYyM5OlmcUPyM2M9OPObMd9TocH_1__BbzAWIM</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Bao, Jiakang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid></search><sort><creationdate>20230602</creationdate><title>Quiver Yangians and -algebras for generalized conifolds</title><author>Bao, Jiakang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>quiver</topic><topic>W-algebras</topic><topic>Yangians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jiakang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jiakang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quiver Yangians and -algebras for generalized conifolds</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-06-02</date><risdate>2023</risdate><volume>56</volume><issue>22</issue><spage>225203</spage><pages>225203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the -algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acd037</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_acd037
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects quiver
W-algebras
Yangians
title Quiver Yangians and -algebras for generalized conifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quiver%20Yangians%20and%20-algebras%20for%20generalized%20conifolds&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Bao,%20Jiakang&rft.date=2023-06-02&rft.volume=56&rft.issue=22&rft.spage=225203&rft.pages=225203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acd037&rft_dat=%3Ciop_cross%3Eaacd037%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true