Loading…
Quiver Yangians and -algebras for generalized conifolds
We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to -algebra...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3 |
container_end_page | |
container_issue | 22 |
container_start_page | 225203 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Bao, Jiakang |
description | We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to
-algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the
-algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations. |
doi_str_mv | 10.1088/1751-8121/acd037 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acd037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacd037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</originalsourceid><addsrcrecordid>eNp1j01Lw0AQhhdRsFbvHvcHGDv7lU2OUvyCggh68LTMfoWUuCm7VNBfb0OkN0_v8DLPMA8h1wxuGTTNimnFqoZxtkLnQegTsjhWp8eZiXNyUcoWQElo-YLo133_FTL9wNT1mArF5GmFQxdsxkLjmGkXUsg49D_BUzemPo6DL5fkLOJQwtVfLsn7w_3b-qnavDw-r-82lWNc6cpGrlC1lrnY2lopKZ1AGUUDVoDwwlmNEqSoGddWcAG-5hwY2uBBNzaKJYH5rstjKTlEs8v9J-Zvw8BM4mYyM5OlmcUPyM2M9OPObMd9TocH_1__BbzAWIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quiver Yangians and -algebras for generalized conifolds</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bao, Jiakang</creator><creatorcontrib>Bao, Jiakang</creatorcontrib><description>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to
-algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the
-algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acd037</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>quiver ; W-algebras ; Yangians</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</citedby><cites>FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</cites><orcidid>0000-0002-9583-1696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Jiakang</creatorcontrib><title>Quiver Yangians and -algebras for generalized conifolds</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to
-algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the
-algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</description><subject>quiver</subject><subject>W-algebras</subject><subject>Yangians</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AQhhdRsFbvHvcHGDv7lU2OUvyCggh68LTMfoWUuCm7VNBfb0OkN0_v8DLPMA8h1wxuGTTNimnFqoZxtkLnQegTsjhWp8eZiXNyUcoWQElo-YLo133_FTL9wNT1mArF5GmFQxdsxkLjmGkXUsg49D_BUzemPo6DL5fkLOJQwtVfLsn7w_3b-qnavDw-r-82lWNc6cpGrlC1lrnY2lopKZ1AGUUDVoDwwlmNEqSoGddWcAG-5hwY2uBBNzaKJYH5rstjKTlEs8v9J-Zvw8BM4mYyM5OlmcUPyM2M9OPObMd9TocH_1__BbzAWIM</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Bao, Jiakang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid></search><sort><creationdate>20230602</creationdate><title>Quiver Yangians and -algebras for generalized conifolds</title><author>Bao, Jiakang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>quiver</topic><topic>W-algebras</topic><topic>Yangians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jiakang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jiakang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quiver Yangians and -algebras for generalized conifolds</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-06-02</date><risdate>2023</risdate><volume>56</volume><issue>22</issue><spage>225203</spage><pages>225203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach by Guay–Nakajima–Wendlandt. We also prove that the quiver Yangians related by Seiberg duality are indeed isomorphic. Then we discuss their connections to
-algebras analogous to the study by Ueda. In particular, the universal enveloping algebras of the
-algebras are truncations of the quiver Yangians, and therefore they naturally have truncated crystals as their representations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acd037</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (22), p.225203 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_acd037 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | quiver W-algebras Yangians |
title | Quiver Yangians and -algebras for generalized conifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quiver%20Yangians%20and%20-algebras%20for%20generalized%20conifolds&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Bao,%20Jiakang&rft.date=2023-06-02&rft.volume=56&rft.issue=22&rft.spage=225203&rft.pages=225203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acd037&rft_dat=%3Ciop_cross%3Eaacd037%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1257-bf25a59b1cf9b65544c3a4f380b303d3cb7a40436127b3230d62201abed078bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |