Loading…
Machine learning based health assessment model for high pressure output pumps in LNG terminals
High pressure output pumps are one of the critical equipment in LNG terminals. Since the health condition of high pressure output pumps has a direct influence on production capability of the terminal, health assessment for these pumps in real time plays an important role on guaranteeing efficient pr...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2020-04, Vol.461 (1), p.12085 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High pressure output pumps are one of the critical equipment in LNG terminals. Since the health condition of high pressure output pumps has a direct influence on production capability of the terminal, health assessment for these pumps in real time plays an important role on guaranteeing efficient productivity of LNG terminals. Using condition monitoring data, a machine learning based health assessment model for high pressure output pumps is proposed. Health features are constructed based on time domain statistical analysis and wavelet packet decomposition, and a SVR model is trained to calculate a health index from extracted features. Actual operating data in Qingdao LNG terminal are used for model validation. Results show that the calculated health indices are sensitive to faults and anomalies of the pumps, and are good indicators of pump health status. The proposed model also shows capability of early warning for some sudden failures, which can be valuable in the operation and maintenance management of LNG terminal equipment. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/461/1/012085 |