Loading…
Earth’s geomagnetic response to solar wind changes associated with solar events at low latitude regions at the TRE MAGDAS Station
The Sun’s magnetic activity influences disturbances that perturb interplanetary space by producing large fluxes of energetic protons, triggering geomagnetic storms and affecting the ground geomagnetic field. The effect of two solar events, namely Coronal Mass Ejection (CME) and Coronal Holes, on geo...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2021-10, Vol.880 (1), p.12009 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Sun’s magnetic activity influences disturbances that perturb interplanetary space by producing large fluxes of energetic protons, triggering geomagnetic storms and affecting the ground geomagnetic field. The effect of two solar events, namely Coronal Mass Ejection (CME) and Coronal Holes, on geomagnetic indices (SYM/H), solar wind parameters and ground geomagnetic fields has provided magnetic ground data, which were extracted from the Terengganu (TRE, -4.21° N, 175.91° E) Magnetometer (MAGDAS) station, and investigated in this study. Results show that the physical dynamic mechanism in the Earth’s magnetosphere is triggered by various solar wind parameters associated with CMEs and Coronal hole events during the minimum solar cycle of 24 at low latitudes. It is important to study solar wind-magnetosphere coupling because it has an impact on ground-based technological systems and human activities. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/880/1/012009 |