Loading…

Hex-dominant mesh generation for basin modeling with complex geometry

Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for bet...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2010-06, Vol.10 (1), p.012085-012085
Main Authors: Ran, Longmin, Borouchaki, Houman, Benali, Abdallah, Bennis, Chakib
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for better numerical results. The basin can simply consist of geological layers delimited one from another by horizons. It can be geometrically complex with one or more faults interrupting the layers, which is barely studied but increasingly demanded. This paper exposes an automatic method which generates hex-dominant meshes for basin modeling with complex geometry. Firstly, based on their triangulations at the latest instant, 3D surface grids are generated with identical topology for all the horizons, and with some quadrilaterals being split across the diagonals to adapt to fault traces. Afterwards, all instants are iterated to generate corresponding meshes by firstly applying horizon and fault displacement on the mesh generated for precedent instant; the method then connects the bottom and top surface grids of the new layer along corresponding nodes, and splits certain cells along faults when necessary. Simulations have been carried out on generated meshes with satisfactory results.
ISSN:1757-899X
1757-8981
1757-899X
DOI:10.1088/1757-899X/10/1/012085