Loading…
Quantum Chemical Computations of an Efficient Push-Pull NLO Chromophore 3-[4-Nitrophenyl Azo]- 9H- Carbazole-9-Ethanol
Electric-optic (EO) materials are being explored for applications ranging from fiber and satellite telecommunications, optical gyroscopes, to photonic detection of radar etc. Dipolar push-pull Organic chromophores that exhibit extended π-conjugation, in particular, show enhanced second order NLO pro...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2022-01, Vol.1219 (1), p.12023 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electric-optic (EO) materials are being explored for applications ranging from fiber and satellite telecommunications, optical gyroscopes, to photonic detection of radar etc. Dipolar push-pull Organic chromophores that exhibit extended π-conjugation, in particular, show enhanced second order NLO properties. The present investigation reports the quantum chemical computations of the high efficiency push-pull NLO molecule 3-[(4-Nitrophenyl Azo)] - 9H-Carbazole-9-Ethanol (NPACE). The organic push-pull molecule is optimized in gaseous and in various solvent condition using Exchange correlation function (B3LYP/MP2). Molecular electrostatic potential, thermal properties and NBO analysis have also been performed in detail. The effective electron cloud moment in the molecule is mainly governed by the physical process termed intramolecular Charge Transfer (ICT). |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/1219/1/012023 |