Loading…
Analysis on temperature effect on the mechanical and tribological properties of titanium nitride thin films
The main goal of this paper is to study the influence of the temperature on the mechanical and tribological characteristics of titanium nitride thin films. The titanium nitride thin films were deposited by reactive magnetron sputtering on silicon substrates using a titanium high purity target. The f...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2016-08, Vol.147 (1), p.12019 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main goal of this paper is to study the influence of the temperature on the mechanical and tribological characteristics of titanium nitride thin films. The titanium nitride thin films were deposited by reactive magnetron sputtering on silicon substrates using a titanium high purity target. The films were deposited in different conditions. Several films were deposited on silicon substrate at room temperature while the others were obtained after the substrate was preheated. The majority of the films were deposited on non-biased substrates while the rest were deposited on substrates to which a negative bias was applied. Once the films were deposited, the characterization was realized by atomic force microscopy investigations determining the topographical parameters as well as the mechanical properties such as the modulus of elasticity and the hardness. The mechanical properties mentioned before were determined at 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in order to establish the effect of testing temperature on the mechanical characteristics. The results highlighted a significant influence of temperature on the mechanical and tribological properties of the investigated titanium nitride thin films. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/147/1/012019 |