Loading…

Visualisation of the large scale circulation in Rayleigh-Bénard convection using contactless inductive flow tomography

Rayleigh-Bénard (RB) convection plays an important role in geo- and astrophysics as well as in many metallurgical applications. At sufficiently high values of the Rayleigh number, a large scale circulation (LSC) is formed whose dynamics had turned out to be surprisingly rich. In this paper, the appl...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2018-10, Vol.424 (1), p.12007
Main Authors: Wondrak, T., Stefani, F., Galindo, V., Eckert, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rayleigh-Bénard (RB) convection plays an important role in geo- and astrophysics as well as in many metallurgical applications. At sufficiently high values of the Rayleigh number, a large scale circulation (LSC) is formed whose dynamics had turned out to be surprisingly rich. In this paper, the applicability of the contactless inductive flow tomography (CIFT) for the detection of the torsional mode of the LSC is investigated. CIFT enables the three-dimensional reconstruction of flow structures in liquid metals by applying one or more magnetic fields and measuring the flow induced perturbations of those fields outside the melt. Additionally, preliminary measurements of the flow induced magnetic field with a similar sensor arrangement will be presented.
ISSN:1757-8981
1757-899X
1757-899X
DOI:10.1088/1757-899X/424/1/012007