Loading…
Evaluation of the effect of expansion and shear stress on a self-assembled endothelium mimicking nanomatrix coating for drug eluting stents in vitro and in vivo
Coating stability is increasingly recognized as a concern impacting the long-term effectiveness of drug eluting stents (DES). In particular, unstable coatings have been brought into focus by a recently published report (Denardo et al 2012 J. Am. Med. Assoc. 307 2148-50). Towards the goal of overcomi...
Saved in:
Published in: | Biofabrication 2014-09, Vol.6 (3), p.035019-035019 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coating stability is increasingly recognized as a concern impacting the long-term effectiveness of drug eluting stents (DES). In particular, unstable coatings have been brought into focus by a recently published report (Denardo et al 2012 J. Am. Med. Assoc. 307 2148-50). Towards the goal of overcoming current challenges of DES performance, we have developed an endothelium mimicking nanomatrix coating composed of peptide amphiphiles that promote endothelialization, but limit smooth muscle cell proliferation and platelet adhesion. Here, we report a novel water evaporation based method to uniformly coat the endothelium mimicking nanomatrix onto stents using a rotational coating technique, thereby eliminating residual chemicals and organic solvents, and allowing easy application to even bioabsorbable stents. Furthermore, the stability of the endothelium mimicking nanomatrix was analyzed after force experienced during expansion and shear stress under simulated physiological conditions. Results demonstrate uniformity and structural integrity of the nanomatrix coating. Preliminary animal studies in a rabbit model showed no flaking or peeling, and limited neointimal formation or restenosis. Therefore, it has the potential to improve the clinical performance of DES by providing multifunctional endothelium mimicking characteristics with structural integrity on stent surfaces. |
---|---|
ISSN: | 1758-5082 1758-5090 |
DOI: | 10.1088/1758-5082/6/3/035019 |