Loading…

Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels

At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (

Saved in:
Bibliographic Details
Published in:Biofabrication 2019-05, Vol.11 (3), p.035020-035020
Main Authors: Zhang, Fan, Xie, Yu, Celik, Hakan, Akkus, Ozan, Bernacki, Susan H, King, Martin W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3
cites cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3
container_end_page 035020
container_issue 3
container_start_page 035020
container_title Biofabrication
container_volume 11
creator Zhang, Fan
Xie, Yu
Celik, Hakan
Akkus, Ozan
Bernacki, Susan H
King, Martin W
description At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (
doi_str_mv 10.1088/1758-5090/ab15ce
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ab15ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203141287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqVw54R8QhwIHdvxJrkgoar8kSpxgbM1ccZZV44d7GQrvgEfm0RbVkWCk63x773xzCuKlxzecWiaS16rplTQwiV2XBl6VJyfSo8f3M-KZznfAuyU2vGnxZmEtpKVEufFr-swuECUXBhYHtH70qB3HSV2wGwWj4kNCe2cmU1xZCZ6jwMFZp3HkcJax9CzgCHaTZXZnZv3KzZOmLDzxEYyewxudWVTihOl2VFmc1w1szsQO1DO5PPz4olFn-nF_XlRfP94_e3qc3nz9dOXqw83pVHA57Jua6i4rLpO9WR5K3amM13DWwUgUYgeoFdkjYBWkoEKrMVdTTVa3lslrbwo3h99p6UbqTfrCAm9npIbMf3UEZ3--yW4vR7iQddSCFXXq8Gbe4MUfyyUZz26bGhdS6C4ZC0ESF5x0WwoHFGTYs6J7KkNB70FqLeE9JaQPga4Sl49_N5J8CexFXh9BFyc9G1cUli3pTurOddSg1QgQE_9Nujbf4D_bfwbv-e25g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203141287</pqid></control><display><type>article</type><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</creator><creatorcontrib>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</creatorcontrib><description>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (&lt;6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</description><identifier>ISSN: 1758-5090</identifier><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ab15ce</identifier><identifier>PMID: 30943452</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Biomechanical Phenomena ; Blood Vessel Prosthesis ; Blood Vessels - physiology ; Cell Adhesion - drug effects ; Cell Proliferation - drug effects ; Collagen - pharmacology ; collagen nanofibers ; electrochemically aligned collagen (ELAC) filament ; electrospinning ; endothelialization ; knitting ; mechanical properties ; Mice ; Nanofibers - chemistry ; Polyesters - chemistry ; Rats ; small caliber vascular graft ; Sutures ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biofabrication, 2019-05, Vol.11 (3), p.035020-035020</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</citedby><cites>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</cites><orcidid>0000-0001-6754-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30943452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Celik, Hakan</creatorcontrib><creatorcontrib>Akkus, Ozan</creatorcontrib><creatorcontrib>Bernacki, Susan H</creatorcontrib><creatorcontrib>King, Martin W</creatorcontrib><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (&lt;6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessels - physiology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Collagen - pharmacology</subject><subject>collagen nanofibers</subject><subject>electrochemically aligned collagen (ELAC) filament</subject><subject>electrospinning</subject><subject>endothelialization</subject><subject>knitting</subject><subject>mechanical properties</subject><subject>Mice</subject><subject>Nanofibers - chemistry</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>small caliber vascular graft</subject><subject>Sutures</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1758-5090</issn><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxSMEoqVw54R8QhwIHdvxJrkgoar8kSpxgbM1ccZZV44d7GQrvgEfm0RbVkWCk63x773xzCuKlxzecWiaS16rplTQwiV2XBl6VJyfSo8f3M-KZznfAuyU2vGnxZmEtpKVEufFr-swuECUXBhYHtH70qB3HSV2wGwWj4kNCe2cmU1xZCZ6jwMFZp3HkcJax9CzgCHaTZXZnZv3KzZOmLDzxEYyewxudWVTihOl2VFmc1w1szsQO1DO5PPz4olFn-nF_XlRfP94_e3qc3nz9dOXqw83pVHA57Jua6i4rLpO9WR5K3amM13DWwUgUYgeoFdkjYBWkoEKrMVdTTVa3lslrbwo3h99p6UbqTfrCAm9npIbMf3UEZ3--yW4vR7iQddSCFXXq8Gbe4MUfyyUZz26bGhdS6C4ZC0ESF5x0WwoHFGTYs6J7KkNB70FqLeE9JaQPga4Sl49_N5J8CexFXh9BFyc9G1cUli3pTurOddSg1QgQE_9Nujbf4D_bfwbv-e25g</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Zhang, Fan</creator><creator>Xie, Yu</creator><creator>Celik, Hakan</creator><creator>Akkus, Ozan</creator><creator>Bernacki, Susan H</creator><creator>King, Martin W</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6754-7500</orcidid></search><sort><creationdate>20190517</creationdate><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><author>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessels - physiology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Collagen - pharmacology</topic><topic>collagen nanofibers</topic><topic>electrochemically aligned collagen (ELAC) filament</topic><topic>electrospinning</topic><topic>endothelialization</topic><topic>knitting</topic><topic>mechanical properties</topic><topic>Mice</topic><topic>Nanofibers - chemistry</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>small caliber vascular graft</topic><topic>Sutures</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Celik, Hakan</creatorcontrib><creatorcontrib>Akkus, Ozan</creatorcontrib><creatorcontrib>Bernacki, Susan H</creatorcontrib><creatorcontrib>King, Martin W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Xie, Yu</au><au>Celik, Hakan</au><au>Akkus, Ozan</au><au>Bernacki, Susan H</au><au>King, Martin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>035020</spage><epage>035020</epage><pages>035020-035020</pages><issn>1758-5090</issn><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (&lt;6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30943452</pmid><doi>10.1088/1758-5090/ab15ce</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6754-7500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-5090
ispartof Biofabrication, 2019-05, Vol.11 (3), p.035020-035020
issn 1758-5090
1758-5082
1758-5090
language eng
recordid cdi_crossref_primary_10_1088_1758_5090_ab15ce
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Animals
Biomechanical Phenomena
Blood Vessel Prosthesis
Blood Vessels - physiology
Cell Adhesion - drug effects
Cell Proliferation - drug effects
Collagen - pharmacology
collagen nanofibers
electrochemically aligned collagen (ELAC) filament
electrospinning
endothelialization
knitting
mechanical properties
Mice
Nanofibers - chemistry
Polyesters - chemistry
Rats
small caliber vascular graft
Sutures
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20small-caliber%20vascular%20grafts%20from%20collagen%20filaments%20and%20nanofibers%20with%20comparable%20mechanical%20properties%20to%20native%20vessels&rft.jtitle=Biofabrication&rft.au=Zhang,%20Fan&rft.date=2019-05-17&rft.volume=11&rft.issue=3&rft.spage=035020&rft.epage=035020&rft.pages=035020-035020&rft.issn=1758-5090&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ab15ce&rft_dat=%3Cproquest_cross%3E2203141287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203141287&rft_id=info:pmid/30943452&rfr_iscdi=true