Loading…
Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels
At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (
Saved in:
Published in: | Biofabrication 2019-05, Vol.11 (3), p.035020-035020 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3 |
container_end_page | 035020 |
container_issue | 3 |
container_start_page | 035020 |
container_title | Biofabrication |
container_volume | 11 |
creator | Zhang, Fan Xie, Yu Celik, Hakan Akkus, Ozan Bernacki, Susan H King, Martin W |
description | At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft ( |
doi_str_mv | 10.1088/1758-5090/ab15ce |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ab15ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203141287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqVw54R8QhwIHdvxJrkgoar8kSpxgbM1ccZZV44d7GQrvgEfm0RbVkWCk63x773xzCuKlxzecWiaS16rplTQwiV2XBl6VJyfSo8f3M-KZznfAuyU2vGnxZmEtpKVEufFr-swuECUXBhYHtH70qB3HSV2wGwWj4kNCe2cmU1xZCZ6jwMFZp3HkcJax9CzgCHaTZXZnZv3KzZOmLDzxEYyewxudWVTihOl2VFmc1w1szsQO1DO5PPz4olFn-nF_XlRfP94_e3qc3nz9dOXqw83pVHA57Jua6i4rLpO9WR5K3amM13DWwUgUYgeoFdkjYBWkoEKrMVdTTVa3lslrbwo3h99p6UbqTfrCAm9npIbMf3UEZ3--yW4vR7iQddSCFXXq8Gbe4MUfyyUZz26bGhdS6C4ZC0ESF5x0WwoHFGTYs6J7KkNB70FqLeE9JaQPga4Sl49_N5J8CexFXh9BFyc9G1cUli3pTurOddSg1QgQE_9Nujbf4D_bfwbv-e25g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203141287</pqid></control><display><type>article</type><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</creator><creatorcontrib>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</creatorcontrib><description>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</description><identifier>ISSN: 1758-5090</identifier><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ab15ce</identifier><identifier>PMID: 30943452</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Biomechanical Phenomena ; Blood Vessel Prosthesis ; Blood Vessels - physiology ; Cell Adhesion - drug effects ; Cell Proliferation - drug effects ; Collagen - pharmacology ; collagen nanofibers ; electrochemically aligned collagen (ELAC) filament ; electrospinning ; endothelialization ; knitting ; mechanical properties ; Mice ; Nanofibers - chemistry ; Polyesters - chemistry ; Rats ; small caliber vascular graft ; Sutures ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biofabrication, 2019-05, Vol.11 (3), p.035020-035020</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</citedby><cites>FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</cites><orcidid>0000-0001-6754-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30943452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Celik, Hakan</creatorcontrib><creatorcontrib>Akkus, Ozan</creatorcontrib><creatorcontrib>Bernacki, Susan H</creatorcontrib><creatorcontrib>King, Martin W</creatorcontrib><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessels - physiology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Collagen - pharmacology</subject><subject>collagen nanofibers</subject><subject>electrochemically aligned collagen (ELAC) filament</subject><subject>electrospinning</subject><subject>endothelialization</subject><subject>knitting</subject><subject>mechanical properties</subject><subject>Mice</subject><subject>Nanofibers - chemistry</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>small caliber vascular graft</subject><subject>Sutures</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1758-5090</issn><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxSMEoqVw54R8QhwIHdvxJrkgoar8kSpxgbM1ccZZV44d7GQrvgEfm0RbVkWCk63x773xzCuKlxzecWiaS16rplTQwiV2XBl6VJyfSo8f3M-KZznfAuyU2vGnxZmEtpKVEufFr-swuECUXBhYHtH70qB3HSV2wGwWj4kNCe2cmU1xZCZ6jwMFZp3HkcJax9CzgCHaTZXZnZv3KzZOmLDzxEYyewxudWVTihOl2VFmc1w1szsQO1DO5PPz4olFn-nF_XlRfP94_e3qc3nz9dOXqw83pVHA57Jua6i4rLpO9WR5K3amM13DWwUgUYgeoFdkjYBWkoEKrMVdTTVa3lslrbwo3h99p6UbqTfrCAm9npIbMf3UEZ3--yW4vR7iQddSCFXXq8Gbe4MUfyyUZz26bGhdS6C4ZC0ESF5x0WwoHFGTYs6J7KkNB70FqLeE9JaQPga4Sl49_N5J8CexFXh9BFyc9G1cUli3pTurOddSg1QgQE_9Nujbf4D_bfwbv-e25g</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Zhang, Fan</creator><creator>Xie, Yu</creator><creator>Celik, Hakan</creator><creator>Akkus, Ozan</creator><creator>Bernacki, Susan H</creator><creator>King, Martin W</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6754-7500</orcidid></search><sort><creationdate>20190517</creationdate><title>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</title><author>Zhang, Fan ; Xie, Yu ; Celik, Hakan ; Akkus, Ozan ; Bernacki, Susan H ; King, Martin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessels - physiology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Collagen - pharmacology</topic><topic>collagen nanofibers</topic><topic>electrochemically aligned collagen (ELAC) filament</topic><topic>electrospinning</topic><topic>endothelialization</topic><topic>knitting</topic><topic>mechanical properties</topic><topic>Mice</topic><topic>Nanofibers - chemistry</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>small caliber vascular graft</topic><topic>Sutures</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Celik, Hakan</creatorcontrib><creatorcontrib>Akkus, Ozan</creatorcontrib><creatorcontrib>Bernacki, Susan H</creatorcontrib><creatorcontrib>King, Martin W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Xie, Yu</au><au>Celik, Hakan</au><au>Akkus, Ozan</au><au>Bernacki, Susan H</au><au>King, Martin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>035020</spage><epage>035020</epage><pages>035020-035020</pages><issn>1758-5090</issn><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates on-going investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30943452</pmid><doi>10.1088/1758-5090/ab15ce</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6754-7500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-5090 |
ispartof | Biofabrication, 2019-05, Vol.11 (3), p.035020-035020 |
issn | 1758-5090 1758-5082 1758-5090 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1758_5090_ab15ce |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Animals Biomechanical Phenomena Blood Vessel Prosthesis Blood Vessels - physiology Cell Adhesion - drug effects Cell Proliferation - drug effects Collagen - pharmacology collagen nanofibers electrochemically aligned collagen (ELAC) filament electrospinning endothelialization knitting mechanical properties Mice Nanofibers - chemistry Polyesters - chemistry Rats small caliber vascular graft Sutures Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20small-caliber%20vascular%20grafts%20from%20collagen%20filaments%20and%20nanofibers%20with%20comparable%20mechanical%20properties%20to%20native%20vessels&rft.jtitle=Biofabrication&rft.au=Zhang,%20Fan&rft.date=2019-05-17&rft.volume=11&rft.issue=3&rft.spage=035020&rft.epage=035020&rft.pages=035020-035020&rft.issn=1758-5090&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ab15ce&rft_dat=%3Cproquest_cross%3E2203141287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-79704134bb5def1926cbcb8195003a22d00d5efc2093ec040ffa67e7af1df53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203141287&rft_id=info:pmid/30943452&rfr_iscdi=true |